Audio in VR
- Audio is very important in VR
- High Quality audio provides:
 - Increased realism
 - Strong immersive sense
 - Strong positional cues
 - Extra information about the environment
 - The shape of the world
- What does 'High Quality' mean?

VR sound environment
- VR equipment is a really bad place to be trying to create sound.
- CAVE
 - Stand in a glass box
 - Pretend you can't hear the echoes.
 - Also hard to place speakers

VR sound environment (2)
- Semi-immersive VR theatre
 - Sit in a big cylinder
 - Reflects sound in a very strange way.

Workbench
- Not so bad but still...
- Big flat screen 1 metre in front of you
- Sound coming from surround speakers
- Creates echoes inappropriate for scene

Audio equipment in VR
- So, most of VR audio is based on very high quality headphones
- Use head tracking to get position and orientation
- Generate sounds as if from sources
- Play to user
- Problem solved!
- ...sadly, not.
A world of sound

- You are surrounded by sound all the time - Silence is unheard of!
- The environment affects (shapes?) the sound you hear
 - Size
 - Shape
 - Materials

What do you hear?

![Time Amplitude Graph]

Rendering sound - ‘Auralization’

- To generate correct echoes must model sound behaviour in the space
- Rooms are complex
- Filled with different materials
 - Reflective
 - Absorbant
 - Frequency filtering
- Just like rendering light

Putting sound in VR environments

- What sound?
- ‘Ambient’ sounds
 - ‘Surround’ sound
 - Often use recorded sounds
- Positional sounds
 - Designed to give a strong sense of something happening in a particular place
 - Also often provided by using recorded sounds

Positional sound

- Using sound to create the sense of active things in the environment
 - Enhances presence
 - Enhances immersion
- Need to deal with many components
 - Reflections (echoes)
 - Diffraction effects

Consider VisClim

- Scene in Linköping’s Storatorget
- Surrounding environment
 - Vehicles? - Several roads nearby
 - People? - Many people in the square
- Weather noise effects
 - Rainfall
 - Snowfall (no sound but damping effect)
Air traffic control

- Simulation so
 - No ‘ambient’ sound required
 - No aircraft noises
 - No realism wanted?
- Positional warnings?
 - Designed to draw the users attention to the location of a problem
 - Which may be out of the field of view

Creating positional sound

- Amplitude
 - stereo (or more)
- Synchronisation
 - Audio delays
- Frequency
 - HRTF

Positional sound - amplitude

- Generate audio from position sources
- Calculate amplitude from distance
- Include damping factors
 - Air conditions
 - Snow
 - Directional effect of the ears

Positional sound - Synchronisation

- Ears are very precise instruments
- Very good at hearing when something happens after something else
- Use this to help define direction
 - Difference in amplitude gives only very approximate direction information
Positional sound - synchronisation

- 30 centimetres
- =0.001 seconds!
- Human can hear ≤ 700μS

3D positional sound

- Humans have stereo ears
 - Two sound pulse impacts
 - One difference in amplitude
 - One difference in time of arrival
- How is it that a human can resolve sound in 3D?
- Should only be possible in 2D?

Positional sound - Frequency

- Frequency responses of the ears change in different directions!
- You hear a different frequency filtering in each ear
- Use that data to work out 3D position information
- How do we mimic that in headphones?

Head-Related Transfer Function

- Define a frequency transfer function
 - for each ear
 - for every direction around the head
- HRTF varies from person to person
 - Must measure each individual user!
 - Measurements involve microphones inserted deep in the user's ears.
 - Use movable sound source to measure response

Using HRTF's

- HRTF's are 3D
- Depend on ear shape (Pinna) and resonant qualities of the head!
- Allows positional sound to be 3D
- Computationally difficult
 - Originally done in special hardware (Convolotron)
 - Now can be done in real-time using DSP
Audio rendering summary
- Rendering audio is really, really hard
- Much bigger problem than lighting
- Material properties are more complex
 - Can’t fake it as easily
 - Properties are always a problem
- Many good methods exist but the problem is too computationally hard for general use at present

What can we do today?
- Constraint is real time audio rendering
- Simple (reflectionless) stereo positional sound
 - Using amplitude
 - Using synchronization
 - Using HRTF frequency filtering
- Useful for audio cues and simple environmental sounds

What can’t we do today
- Full interactive audio rendering
- Still too large a computational problem
 - Reflections and diffractions too complex
 - For real situations at least
- Simple scenes do provide some scope
 - Buildings – hard materials, flat planes
 - Could handle VisClim in real time?

Voice interaction
- Voice input for control
 - Continuous?
 - Discrete?
- Voice output for information
 - Positional? – Alerts
 - Arbitrary? – Purely informational

Voice output
- Speech synthesis is quite sophisticated
- Can create a reasonably human-sounding synthetic voice
 - Quite understandable
 - Often not too pleasant to listen to
- Can use sampled sound and signal processing to create a real sounding voice
 - In more limited circumstances

Voice output
- Can combine voice synthesis with positional sound to create a warning
 - Use position as an ‘attractor’
 - Draw user’s attention to the location of the problem
- (Maybe?) no need to worry about complex sound rendering
Voice recognition

- Potentially very powerful interaction mode
- Can free the user
 - From keyboard
 - From 2D or 3D mouse
- Been in development for 20 years
 - with limited success

Voice recognition: The dream

Voice recognition: The reality

Continuous speech recognition

- Requires
 - Very good sound equipment
 - High quality microphone
 - High quality sound hardware on computer
 - Minimum of 500MHz processing power
 - Probably much more
 - Lots and lots of physical memory
 - database of grammar and word structures

Discrete speech pattern recognition

- Create a set of command phrases
 - As small as possible
 - As distinct as possible ("on"/"off" are bad!)
- Use audio pattern matching to determine if one of the command phrases has been said.
- Have to get it’s attention somehow
 - Like a button?

Voice recognition in ATC

- Air traffic control application
 - Has discrete set of commands
 - Often want to turn features on and off
 - "enable" and "disable"
 - Can build a command set
- Use button to get its attention
- Error rate <5% (on a good day)
ATC command set

- restart scenario: restart scenario
 Say this part
 This is sent to the application
- Currently have about 110 commands
 - 25 of which are flight selection

ATC command set(2)

- height scale 1: scalefactor 1
- height scale 3: scalefactor 3
- time factor 1: updatefreq 1
- time factor 4: updatefreq 4
- trajectory inactive disable: trajmode 0 0
- trajectory inactive enable: trajmode 0 1
- focus on flight S K 2 3 1: airplane focus on SK231
- focus on flight S K 2 3 2: airplane focus on SK232
- focus on flight S K 2 3 4: airplane focus on SK234

Summary: Voice interaction

- Speech synthesis works quite well
 - Allows for easy informative feedback
- Speech recognition is harder
 - General case still impossible
- Defined command set can be worked with
 - Recognition rates can be very high
 - Still not perfect