Virtual Reality Technology and Programming

TNM053: Lecture 09: Interaction Techniques for VR

2D and 3D interaction

- 2D interaction
 - Straightforward since commonly used
 - Pointing device controls interaction point
 - Pick 2D objects as regions of plane
 - Measure 2D interactions
- 3D interaction with 2D pointer
 - All of 2D but in 3D context – object picking
 - Difficulties resolving depth and selected objects
 - Navigation – Control of the camera

VR interaction

- Lots of similarity to 3D
- Difference due to immersion
 - More interaction mechanisms available
- Added ‘natural’ responses
 - due to ‘presence’
 - Mutual dependence on presence

Fundamental forms of interaction

- Movement (of camera)
- Selection:
 - of objects
 - of controls (widgets)
- Manipulation (of objects)
- Scaling of the scene
- Virtual menu and widget interaction

Natural interaction

- Immersive display
 - should give us ‘real world’ interaction
- In reality they don’t:
 - Most displays externalize the world
 - Workbench and wall are just like monitors
 - Caves are more immersive
 - Usually cave surrounded by the scene, not in it!
- Only tracked HMD meets requirements of full immersion

Wall/ Workbench display

- Immersive display
 - should give us ‘real world’ interaction
- In reality they don’t:
 - Most displays externalize the world
 - Workbench and wall are just like monitors
 - Caves are more immersive
 - Usually cave surrounded by the scene, not in it!
- Only tracked HMD meets requirements of full immersion
<table>
<thead>
<tr>
<th>Wall/ Workbench display</th>
<th>Cave - more immersive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Only HMD’s are fully immersive but...</th>
<th>Movement (Navigation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- They have limitations in display...</td>
<td>- Essential to control camera point</td>
</tr>
<tr>
<td>- Slow updates leading to disorientation</td>
<td>- Head tracking</td>
</tr>
<tr>
<td>- Limited field of view</td>
<td>- Used in motion parallax</td>
</tr>
<tr>
<td>- cybersickness</td>
<td>- And in limited head motion</td>
</tr>
<tr>
<td>- and in tracking...</td>
<td>- Camera translation – moving the box</td>
</tr>
<tr>
<td>- Range limited to a few metres or less</td>
<td>- Use navigation metaphors</td>
</tr>
<tr>
<td>- Usually no less limited than a cave</td>
<td>- Direction and speed control required</td>
</tr>
<tr>
<td>- and in cables for the displays</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Movement - direction</th>
<th>Gaze-directed motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Gaze-directed</td>
<td>- Move in the direction of view</td>
</tr>
<tr>
<td>- Hand-directed</td>
<td>- Feels quite natural</td>
</tr>
<tr>
<td>- Physical controls</td>
<td>- Problems with navigation of view</td>
</tr>
<tr>
<td>- Virtual controls</td>
<td>- Head and eyes are rarely aligned</td>
</tr>
<tr>
<td></td>
<td>- Can’t watch the scene go by</td>
</tr>
<tr>
<td></td>
<td>- Rarely used in VR</td>
</tr>
<tr>
<td></td>
<td>- Common in 3D (game) environments</td>
</tr>
<tr>
<td></td>
<td>- Well-defined view direction</td>
</tr>
</tbody>
</table>
Hand-directed motion

- Pointing mode – a driving metaphor
 - User points in desired direction
 - Track hand directly (glove)
 - 5DOF required
- 'Crosshair' mode:
 - Use head/hand axis to move
 - Supposed to make it easier for a novice
 - Makes it hard to move and look sideways
 - Can use 3DOF devices

Tracking direction

- Gaze directed
- Crosshair
- Hand directed

Physical controls

- Physical (not tracked) devices
 - Buttons, knobs and sliders
 - Once very common (cheap and easy)
 - Not realistic - Lacks a natural mapping
 - Realistic – part of the virtual world:
 - Steering wheels
 - Handlebars
 - Joysticks
 - Has scope for force feedback
 - Current exjobb on this in car simulation

Virtual Controls

- Instead of physical devices, use virtual
 - Virtual steering wheel
 - Virtual ‘flight-stick’
- Place where you want in the scene
- Hard to interact with
 - How do you use a steering wheel if you can't grip it directly?
 - Harder to incorporate force-feedback

Controlling Speed

- Constant speed
- Constant acceleration
- Controlled speed
- Controlled acceleration

Constant speed

- What speed is the right speed?
 - Close up needs slow movement
 - Examination needs slow movement
 - Navigation typically calls for higher speed
- Not widely used
Constant acceleration

- Start slow and accelerate under...
 - Button control?
 - Hand control?
- Good for allowing user to...
 - Examine small details close up
 - Navigate across long distances
- Tendency to overshoot
 - Needs good depth cueing

Controlled speed or acceleration

- Provide access to a range of speeds
 - What range?
- Controlled how?
 - Hand controlled
 - Physical controls

Hand controlled speed/acceleration

- E.g. Distance head-hand determines it
 - Used with ‘crosshairs’ direction control

Hand controlled speed/acceleration

- Works well
 - Intuitive
 - Natural mapping to the virtual world
- Relies on proprioceptive sensation
 - Not very precise
 - Needs large ‘dead zone’
 - Limited dynamic range

Object driven navigation

- Build objects into the scene to move:
 - Lifts
 - Moving walkways/stairways
 - 'stepping discs' (teleporters)
- More exotic:
 - Attractors
 - Repellors
- Must know where people want to go
 - Virtual architecture?

Major problems with hand-related navigation

- Fatigue
 - Large-arm movement for navigation
 - Long periods of use (hours)
- Must be able to turn off navigation
- Long periods of use require other methods
 - Usually physical devices

Hand controlled speed/acceleration

- E.g. Distance head-hand determines it
 - Used with ‘crosshairs’ direction control
Goal driven navigation

- Drive the view through a set of defined points
 - List or virtual map
- Requires that you know what is ‘interesting’ in the scene
 - Objects
 - Routes (passing interesting objects)

Goal driven navigation (2)

- User moves by selecting next point of interest:
 - From a list? (as used in VRML)
 - By selecting an object and moving to corresponding point?
- Teleport? – less ‘presence’
- Compute shortest (quickest) route to selected destination and auto-move

Orbital mode

- Has specialized uses (in HMD or cave)
- Rotate using head orientation:
 - Fix object in front of view
 - move around it by turning and tilting
- Allows full examination of a single scene object (or cluster) without moving or navigating
- Could still zoom

Orbital mode(2)

Navigation: Summary

- General applications
 - mostly rely on hand (crosshair) control
 - For both direction and speed
 - most natural (?)
- Real applications usually use a mixture
- Extended use needs physical controls

Interaction with the world

- Object selection
 - Picking objects
 - Manipulating selected objects
- Control interaction
 - Widgets: defining and using
Object selection in 3D graphics

Object selection in VR

Transform schemes

- Hardest part of using systems like this is the mass of coordinate transforms
- Rendering generates many transforms
- VR generates many more
 - stereo
 - tracking devices

Transformations

- Very complex layered transformation
 - Much difficulty hidden by modern systems
 - Stereo hidden in graphics library
 - Interactor results hidden from programmer
- You only have two frames
 - World
 - ‘CAVE’
glLoadIdentity
- Don’t!
- It undoes some of the CAVE initialization for the display function
- Moves the display into the wrong transform

Selection
- User probably needs to select objects
- How to specify selected object?
 - Close range
 - Within 'arms-reach'
 - Maybe user can move around the objects
 - Long range
 - Outside natural arms reach
 - On the other side of the screen
 - More complex selection scheme required

Object picking
- Requires object intersection testing
 - Local probe with object
 - Remote 'beam' with object
- Simplest methods:
 - Range checking (from centroid)
 - Object plane intersection testing
 - Bounding box intersection

Intersection testing
- Within a coordinate frame
- Use vector mathematics to compute intersections

Selecting a sphere

Facet intersection testing
- In general we cannot use such a simple scheme
- We must test for intersection by more complex methods
- Must test for intersection using testing on the polygons making up the object
 - or a bounding box?
Facet intersection testing

- 3D space!

Repeat for every triangle in the object!
Can ignore back-faces with respect to pointer

Bounding box selection

- Can use (3D) bounding box to test
- Box must fit appropriately.

Overlaps

- What if your wand vector goes through many objects?
- Select them all?
- Select the nearest?
 - How?
 - Sort objects by distance and test?
 - Test all and sort intersections by distance?
 - Other?

Scene graphs!

- The scene graph knows everything about the objects in the 3D scene at one time
- Can depth sort them for you
- Can work out the intersections for you
- Can use hierarchy to define appropriate bounding boxes for you
- Can define which objects can and which cannot be ‘picked’

Selection approaches

- How to interact with the scene
- Close up
- Far
- Sparsely populated scenes
- Packed scenes

Close-range selection

- Bring hand/cursor to object
- Very natural mode of interaction
- Avoid problem of close-spaced objects
 - Can move easily to the objects
 - Reach into the space
 - Place pointer precisely within/on the object
Long-range selection

- Must select at a distance
- Selection requires a pointer
 - Could use gaze-directed selection
- What about multiple close-spaced objects at similar distance?
 - Problems determining object closest to pointer
 - Problems of occlusion of distant objects
- What about selecting multiple objects?

Long range selection (2)

- Simple in clear scene
- In complex scene can get problematic
- Other select/manipulate schemes needed like:
 - Fixed length pointer
 - Navigable ‘drone’

Long range selection (3)

- Long range selection requires:
 - Highlighting of current object
 - Clear view of objects and probes
- Gravity?
 - Pulls selector to specific objects
 - Allows user to move between objects
- Selection schemes application specific

Manipulation

- Having selected objects user might want to manipulate them
 - Rotate
 - Translate
- Centre of rotation
 - About object (centroid)
 - About virtual point of contact
- Again, what about action at a distance?

Manipulation: Close range

- Make centres of action at ‘hand’
 - Select object
 - Move ‘hand’ in 6DOF
 - Rotate and translate object accordingly
- Very natural, very intuitive

Manipulation: Long range

- What defines the centre of action?
 - Centroid of object?
 - Position of selection point?
- What defines the centre of rotation?
 - Position of selection?
 - Maybe ok for moving an object
 - Doesn’t allow for much rotation
 - Position of hand?
 - Better for rotation
 - Relies on the mouse metaphor
Scaling

- In addition we want to be able to scale
 - Expand around object of interest
- Use hand point and scale around that
 - Natural and easy
- Use selected object and scale about it
 - Use hand point as origin for 3D mouse

Manipulation: Summary

- Quite a few modes of action
- Long range manipulation is a problem
 - Especially in control of rotation
- Most applications use a mixture of these modes

Virtual widgets

- Analogous to widget sets used in 2D interfaces
- No limit on what can be used as a widget
 - Any imaginable object
 - Multi-dimensional menus are possible
 - No real guidance yet
 - Most interfaces look very familiar, like 2D

Floating menus

- 1D movement of device selects from a circular list
 - Twist
 - Turn
 - Spin

Menu dimensionality

- 1D movement of device selects from a circular list
 - Twist
 - Turn
 - Spin

- Could be very natural in a tracked glove environment
 - Gesture driven – Johnny Mnemonic
- Could use other shapes for additional items
 - Sphere? Cylinder? Cube?
 - Hierarchical?
Interface problems

- Occlusion of the display
 - Large displayed widgets block display
 - Resolution problems
- Good placement vital
- Context-dependent pop-ups useful
- Bad display damages sense of presence
- Distance problems:
 - Change of focal distance
 - Tiring for the user’s eyes

3D palette

Palm device interfaces

- (Bluetooth?) wireless devices
- Acts as a palette for widgets
- Added interface for interaction
- Tracked
- Tablet PC?
 - With stereo?

Case Study: Air Traffic Management

- Wish to view air traffic flow
- Wish to modify planned routes (waypoints)
- Need to be able to examine
 - Space around airport
 - Space around a specific aircraft
 - Space around a specific waypoint
 - Space around an arbitrary point
Navigational needs

- **Select location of points of interest:**
 - Airport
 - Aircraft
 - Arbitrary point in the scene
- **Navigate around point:**
 - Rotate in 2DOF (L-R/U-D)
 - Zoom in and out
 - Scale display (exaggerate altitude)

Navigational modes

Rotation around point

- Camera point transition
 - Made within the scene
 - Long range jumps made by zooming out
 - Instantaneous transition within view
- Camera rotation
 - Use Physical rotation of pointer device
 - Use angling of pointer device

Selection needs

- **Selection of navigational points**
 - Airport – List
 - Aircraft – Select with pointing device
 - Arbitrary point – use surface crosshair
- **Selection of interactive points**
 - Select waypoints
 - Insert new ones

Selection of waypoints

- Use wand pointer
- Use ‘gravity’
 - Snap to close point (waypoint/aeroplane)
- Click and hold to move selected point
- Double-click and hold to insert point

Final interface

- **Navigate**
 - Joystick
 - Zoom
- **Select and move waypoint**
- **Select view point:**
 - Engage wand
 - Select new centre of rotation:
 - Scene point
 - Waypoint
 - Aircraft
ATM: Additional feedback
- Aircraft and waypoints have additional information which must be presented
- Achieved through pop-up window
 - Currently at fixed depth in the scene
 - Not very satisfactory – tiring for the eyes

Minority Report
- Stunning VR interface
- Actually 2D but 3D interaction
- Uses hand and head (eye?) tracking
- Uses gestures
- Uses modal virtual widgets
- Also demonstrates the importance of being able to turn the interface off!

In the year 2054 a murder is about to be committed...

MR: Selection Metaphor

MR: Gestures
MR Gestures (2)

MR: Virtual Widgets

...but there is a downside

Summary

- Navigation and interaction using VR features is tricky:
 - Many possibilities...
 - ...But few guidelines
- Lots of potential problems:
 - Fatigue
 - Complex navigation points
- Important to analyse application
 - Navigational requirements
 - Interaction requirements
 - Features in the application display