Telepresence

- The use of VR to visit a real remote location
 - And interact with it?
- Has applications in many areas like:
 - Remote driving or flight (combat?)
 - Operation of machinery in hazards
 - Remote medicine

Telepresence examples

- Greenman
- 1986

Telepresence examples

- TOPS
- Tele-diver
- 1991

Telepresence for medicine - Telemedicine

- Allows surgeons to operate remotely
 - Useful for rarely carried out operations
 - Useful for patients in remote areas
 - Battlefield medicine?
- NASA test for ISS 2004-10-13
- Becoming possible through a number of new technologies:
Surgical trainers…
- e.g. PROMIS
- Laparoscopic surgical trainer
- Tracked handles
- Camera
- Force feedback?
 - probably not

...and reliable networks...
- Need reliable and fast communication
 - No dropouts
 - no lag
- Can be provided by technologies like ATM over fibre

...to robotic devices...
- Complex precise robotics
- ‘Waldo’ devices for micromanipulation
 - mechanical devices in use for years
 - electronic ones now becoming more commonplace.

...for remote interaction
Remote surgery: Operation Lindbergh
- Surgeon in New York, USA
- Patient in Strasbourg, France
 - 68 year old woman
 - Laparoscopic Cholecystectomy (gallbladder removal)
- Video and control signals sent over ATM using dedicated OC3 fibre link.
 - Constraint 0.6 seconds round trip time
Operation Lindbergh had no haptic feedback — Common in laparoscopy

How can haptics be incorporated?
- Research being done at KTH on this
 - Project ran to June 2003
- Built system based on 2 phantom devices

Collaborative haptics at KTH
- Used 2 stations
- In separate rooms
- Connected using ethernet and voice
- 2 users work in same VR scene
 - Can’t see each other’s ‘pointer’
- Build things out of blocks

Users can feel each others actions
- Can speak to each other to share information
- Try to work together to build things
- Very difficult – can’t see one another
- Problem with update rates?
 - Surface interactions need ~1KHz

Collaborative VR: Collaborative visualization
- Collaborative visualization has been a popular goal
 - Visualization shared across multiple users
 - In the same place
 - In different places
- Real science and medicine
 - and games!

Tele-collaborative medicine
- Java (or DirectPlay)
- Central server?
- Distributed clients
- Shared data
- Shared view
- Interaction
Collaborative VR: Problems

- Two users can’t share a space
 - Head-tracking works for a single user
 - perspective problem
 - parallax problem
- Unless they are wearing HMD’s
- Or have well-separated displays

The PIT

- Protein Interactive Theatre
- Collaborative Chemistry system
 - Designed for Structural- and Bio-chemists
- Allows two users to work together
- Both see well displayed VR stereo scene

Distributed (collaborative) VR

- Similar goals
 - Share scene between multiple users
 - Possibly on distributed sites
 - Shared interaction
- Similar client(-server) models
 - Usually central server with multiple clients
- More interaction methods required
 - E.g. haptics

Distributed collaborative VR

- DEVA - Advanced Interfaces Group
 - Manchester-based research centre
- Centralized ‘world’ server
- Clients download and display scene locally
- Interaction shared through server
- Avatars show other users
DEVA

Example: DI VI PRO -
Distributed Interactive Virtual PROtotyping

TNM053 - VR Technology and programming
Lecture 12.5: Summary, Applications, future
Matt Cooper

So, what is VR?
- Bringing together many technologies:
 - High quality computer graphics
 - Photorealism
 - High performance rendering
 - Large and complex scenes
 - Accurate tracking in many DOF's
 - Accurate, fast force feedback
 - High quality audio rendering

What is VR? (2)
- ...Using sophisticated approaches...
 - sophisticated scene rendering
 - Appropriate, complex interaction techniques
 - Accurate, realistic physical modelling
 - Game engines
 - addressing many senses simultaneously:
 - Sight, hearing, smell, touch (& heat, wind…)

What is VR? (3)
- ...to create a virtual world...
 - designed to meet a need
 - creating a sense of presence
 - and of immersion
 - and hence (with good goal design) involvement
What is VR? (4)

- ...so that the user can do something!
 - Be entertained
 - Learn something
 - practice a skill or a new technique
 - memorize an escape route
 - Carry out a task
 - Examine some data
 - Operate on a patient

VR has always been...

- a lot of hype!...
- ...but it’s becoming more and more useful
- Finding a place in niche markets
 - Oil and gas survey (geological)
 - Medical – training and diagnosis
 - Engineering (data analysis)
 - Design and engineering (CAD)
 - Training and education
 - Entertainment
 - ...

It needs the best and most expensive cg hardware

- But that’s becoming available in hardware down to the level of a PC
 - Rendering performance quite adequate to some tasks is already available
 - Single screen trainers based on 3D graphics cards in PC’s are becoming commonplace

Needs complex software

- Needed to manage complex 3D scenes
- Which you can now download for free from the web
 - OpenGL
 - OpenInventor
 - OpenScenegraph
 - VR Juggler (replacement for CaveLib)

Very expensive displays

- Bright and powerful projectors...
- which you can now buy for ~$2000
 - ASK-DLP
- Expensive head-mounted displays...
- which you can now buy for ~$2000
- Or expensive shutter glasses (<$100)
- Or polarized glasses (<$10)

Expensive tracking equipment

- Commercially that’s still true...
 - Still costs many thousands of dollars
 - Which affects things like head and pointer tracking badly
- ...but building your own *mechanical* devices is not prohibitive
 - Building Stefan’s monkey cost $300
Very expensive haptic kit

- Sadly still true and not much to be done about it
 - Building your own is difficult
 - The ‘toy’ equipment isn’t much use
- Prices are coming down
 - Still costs thousands
 - Won’t be available for general (home) use for several years at least

Hard to interact with

- Yes, it can be
- Needs:
 - Careful design
 - Some (more) imagination
 - More research and development
- In 1976 someone implemented ‘WIMP’
 - Took ~15 years to become commonplace

And so...

- Is finally becoming a main-stream technology
- Ten years ago it was science-fiction
 - (Ok, almost)
- Now it’s expected to be the norm in less than 20 years time

Application areas

- Oil and gas
 - Major buyers of cylindrical semi-immersive display technology
 - Use it for collaborative discussion of geological data
 - Norsk Hydro use it routinely

Application areas

- Medical
 - In Trainers
 - In surgery
- Engineering (data analysis)
Application areas

- Design and engineering (CAD)

Application Areas

- Trainers

So...

- The range of applications is expanding
 - Few have completely converted
 - Many have taken on components of VR
- VR trainers are becoming common
 - Because they're a cheaper alternative
 - Because they're convenient
 - Because they can now be authentic

Future developments

- Other than more and better examples of VR...
- Collaborative VR
- Augmented reality
- Better user interface design
 - More imagination!

Augmented Reality

- The use of VR to add objects into the real world
- Requires very precise tracking
- Requires very precise maps of the world
- Never really found a general use
- Clinical users have always been a target audience
Clinical augmented reality

- Systems have been tried for several years
- Sophisticated, accurate tracking
- Powerful graphics (for the time)
- Never (yet) successful
 - too much for the doctor to take in one go
 - too alien a working method

Augmented reality: an example

Augmented Reality

- New technologies in vision systems and tracking enabling other uses
- Mark Ollila showed you some of these.
- Sneaking the technology in the back door:
 - Get people used to it in small ways
 - Then hit them with the big ideas.

And that’s it!

- Lecture notes, papers, labs all available from:
 http://www.itn.liu.se/~matco/TNM053/TNM053.html

Labs

- Final date for lab demonstration: 2004-12-17
- After that there will be sessions in the examination period in March (April?)

Examination

- To be held Tuesday (19th)–Friday (22nd)
- Booking sheets up outside my office
 - 6th floor
- Each slot 30 minutes.
- Examination is oral
 - Spoken ‘Interview’ Q&A
Preparing for the exam

- Orals are quite like any other exam
 - Read and understand the lecture notes
 - Read and understand the papers
 - We ask you questions...
 - ...(hopefully) you answer them.
- But not exactly the same
 - Presenting the material isn't the same.

Preparing for the exam

- Talking about the material isn't the same as writing about it:
 - More immediate
 - Less thinking time.
- Prepare by talking about it.
 - Work in small groups (two or more).
 - Discuss the material
 - Discuss your *understanding* of it

And that’s it!

- Lecture notes, papers, labs all available from:

 http://www.itn.liu.se/~matco/TNM053/TNM053.html