Virtual Reality Technology and Programming

TNM053: Lecture 11: Audio in VR

Audio in VR
- Audio is very important in VR
- High Quality audio provides:
 - Increased realism
 - Strong immersive sense
 - Strong positional cues
 - Extra information about the environment
 - The shape of the world
 - What does ‘High Quality’ mean?

VR sound environment
- VR equipment is a really bad place to be trying to create sound.
- CAVE
 - Stand in a glass box
 - Pretend you can’t hear the echoes.
 - Also hard to place speakers

VR sound environment (2)
- Semi-immersive VR theatre
 - Sit in a big cylinder
 - Reflects sound in a very strange way.

Workbench
- Not so bad but still...
- Big flat screen 1 metre in front of you
- Sound coming from surround speakers
- Creates echoes inappropriate for scene

Audio equipment in VR
- So, most of VR audio is based on very high quality headphones
- Use head tracking to get position and orientation
- Generate sounds as if from sources
- Play to user
- Problem solved!
- ...sadly, not.
A world of sound

- You are surrounded by sound all the time – Silence is unheard of!
- The environment affects (shapes?) the sound you hear
 - Size
 - Shape
 - Materials

Anechoic chamber

- No echoes
- Quiet!
 - So quiet you can feel it!
- No superposition
 - Voices sound *very* different
 - Quieter, different frequencies, no echoes
- All effects you are used to hearing
 - Their absence is very noticeable

Consider the lecture theatre

- Designed to channel sound from the speaker to the audience
 - Shaped to funnel sound to the back

What do you hear?

- Amplitude

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>(t_0)</th>
<th>(t_1)</th>
<th>(t_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Sound</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Reflection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Echo...echo...echo...

- Sound impulses produce echoes in all normal environments
- So does speech
- Time integration is shorter than the decay time
 - You hear some of the echoes
 - Probably not shorter than \(t_1 - t_0 \)
 - You don't hear all of them!
- Normally you don't mind.
 - You ignore the superposition
 - You ignore the frequency changes
 - (Could be a cause of stammering)

Rendering sound
- ‘Auralization’

- To generate correct echoes must model sound behaviour in the space
- Rooms are complex
- Filled with different materials
 - Reflective
 - Absorbant
 - Frequency filtering
- Just like rendering light
Illumination modelling

- Many methods
 - Ray tracing
 - Radiosity modelling
- More complex methods
 - Image based lighting
 - Others

Ray tracing

Audio ray tracing

- Doesn't work
- Sound is slow
- Sound really doesn't travel in straight lines
 - neither does light... but we don't notice (much)
- Different frequencies don't behave the same
 - neither does light... but we don't notice (much)
- All objects in scene filter sound affecting:
 - reflection
 - diffraction
 - frequency

Radiosity mapping

- Use patches
 - model the incident light ‘energy’
 - compute how those patches illuminate other patches
- Much more efficient but based on similar approach
- Light travels in straight lines
- ...or appears to most of the time

Diffraction problem - Light

Diffraction problem - Sound
Reflection problem - Light

- Incident ray -> reflected ray + ambient light

Reflection for real light

- No such thing as ambient light
- Real surfaces are not planes
 - They have surface properties
 - Skin has thickness and a fat layer

Reflection problem - Sound

- For sound *all* materials have very complex surface properties:
 - ‘skin’ and ‘fat’
- Surfaces resonate
- Surfaces diffract
- All sound reflection is hard to calculate
 - Not yet a real-time problem

Motion makes it worse!

- Sound is slow
 - ~300m/s (c.f. light: ~300 000 000m/s)
- 100kph = ~27m/s
- Doppler effect changes frequencies from a moving sound source
 - ~10-30% when a car passes you
- 10KPH = ~2%

Putting sound in VR environments

- What sound?
- ‘Ambient’ sounds
 - ‘Surround’ sound
 - Often use recorded sounds
- Positional sounds
 - Designed to give a strong sense of something happening in a particular place
 - Also often provided by using recorded sounds

Positional sound

- Using sound to create the sense of active things in the environment
 - Enhances presence
 - Enhances immersion
- Need to deal with many components
 - Reflections (echoes)
 - Diffraction effects
Consider VisClim
- Scene in Linköping's Storatorget
- Surrounding environment
 - Vehicles? - Several roads nearby
 - People? - Many people in the square
- Weather noise effects
 - Rainfall
 - Snowfall (no sound but damping effect)

VisClim

Air traffic control
- Simulation so
 - No 'ambient' sound required
 - No aircraft noises
 - No realism wanted?
- Positional warnings?
 - Designed to draw the users attention to the location of a problem
 - Which may be out of the field of view

Air traffic control

Creating positional sound
- Amplitude
 - stereo (or more)
- Synchronisation
 - Audio delays
- Frequency
 - HRTF

Positional sound - amplitude
- Generate audio from position sources
- Calculate amplitude from distance
- Include damping factors
 - Air conditions
 - Snow
 - Directional effect of the ears
Positional sound - Synchronisation

- Ears are very precise instruments
- Very good at hearing when something happens after something else
- Use this to help define direction
 - Difference in amplitude gives only very approximate direction information

Positional sound - Synchronisation

- 30 centimetres
- =0.001 seconds!
- Human can hear = 700µS

3D positional sound

- Humans have stereo ears
 - Two sound pulse impacts
 - One difference in amplitude
 - One difference in time of arrival
- How is it that a human can resolve sound in 3D?
- Should only be possible in 2D?

Positional sound - Frequency

- Frequency responses of the ears change in different directions!
- You hear a different frequency filtering in each ear
- Use that data to work out 3D position information
- How do we mimic that in headphones?

Head-Related Transfer Function

- Define a frequency transfer function
 - for each ear
 - for every direction around the head
- HRTF varies from person to person
 - Must measure each individual user!
 - Measurements involve microphones inserted deep in the user’s ears.
 - Use movable sound source to measure response

Using HRTF’s
HRTF's

- HRTF's are 3D
- Depend on ear shape (Pinna) and resonant qualities of the head!
- Allows positional sound to be 3D
- Computationally difficult
 - Originally done in special hardware (Convolotron)
 - Now can be done in real-time using DSP

Audio rendering summary

- Rendering audio is really, really hard
- Much bigger problem than lighting
- Material properties are more complex
 - Can't fake it as easily
 - Properties are always a problem
- Many good methods exist but the problem is too computationally hard for general use at present

What can we do today?

- Constraint is real time audio rendering
- Simple (reflectionless) stereo positional sound
 - Using amplitude
 - Using synchronization
 - Using HRTF frequency filtering
- Useful for audio cues and simple environmental sounds

What can't we do today

- Full interactive audio rendering
- Still too large a computational problem
 - Reflections and diffractions too complex
 - for real situations at least
- Simple scenes do provide some scope
 - Buildings - hard materials, flat planes
 - Could handle VisClim in real time?

Voice interaction

- Voice input for control
 - Continuous?
 - Discrete?
- Voice output for information
 - Positional? - Alerts
 - Arbitrary? - Purely informational

Voice output

- Speech synthesis is quite sophisticated
- Can create a reasonably human-sounding synthetic voice
 - quite understandable
 - often not too pleasant to listen to
- Can use sampled sound and signal processing to create a real sounding voice
 - in more limited circumstances
Voice output
- Can combine voice synthesis with positional sound to create a warning
 - Use position as an ‘attractor’
 - Draw user’s attention to the location of the problem
- (Maybe?) no need to worry about complex sound rendering

Voice recognition
- Potentially very powerful interaction mode
- Can free the user
 - From keyboard
 - From 2D or 3D mouse
- Been in development for 20 years
 - with limited success

Voice recognition: The dream

Voice recognition: The reality

Continuous speech recognition
- Requires
 - Very good sound equipment
 - High quality microphone
 - High quality sound hardware on computer
 - Minimum of 500MHz processing power
 - Probably much more
 - Lots and lots of physical memory
 - database of grammar and word structures
Continuous speech recognition

- Requires substantial amount of training of the recognition system
- Modern systems learn from use
 - Remembers the corrections you make
- Several systems on the market
- Error rate remains too high to be useful for interaction purposes.

Discrete speech pattern recognition

- Designed to build simple interfaces
 - Like the one S.J. uses for customers checking train times over the telephone
- The command set is small
- Often the sounds are distinctive
 - Even with accents?
- Can exploit this for our purposes

Discrete speech pattern recognition

- Create a set of command phrases
 - As small as possible
 - As distinct as possible ("on"/"off" are bad!)
- Use audio pattern matching to determine if one of the command phrases has been said.
- Have to get it's attention somehow
 - Like a button?

Voice recognition in ATC

- Air traffic control application
 - Has discrete set of commands
 - Often want to turn features on and off
 - "enable" and "disable"!
 - Can build a command set
- Use button to get its attention
- Error rate <5% (on a good day)

ATC command set

- **restart scenario:**
 - Say this part
 - This is sent to the application
 - Currently have about 90 commands
 - 25 of which are flight selection

<table>
<thead>
<tr>
<th>ATC command set (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>height scale 1:scalefactor 1</td>
</tr>
<tr>
<td>height scale 3:scalefactor 3</td>
</tr>
<tr>
<td>height scale 6:scalefactor 6</td>
</tr>
<tr>
<td>time factor 1:updateref 1</td>
</tr>
<tr>
<td>time factor 4:updateref 4</td>
</tr>
<tr>
<td>time factor 10:updateref 10</td>
</tr>
<tr>
<td>waypoints disable:waypoints 0</td>
</tr>
<tr>
<td>waypoints enable:waypoints 1</td>
</tr>
<tr>
<td>clip box disable:clipbox 0</td>
</tr>
<tr>
<td>clip box enable:clipbox 1</td>
</tr>
<tr>
<td>compass size big:instrumentsize 3</td>
</tr>
<tr>
<td>compass size small:instrumentsize 1</td>
</tr>
<tr>
<td>sector mode:sectormode 1</td>
</tr>
<tr>
<td>trajectory mode:sectormode 0</td>
</tr>
</tbody>
</table>
ATC command set(2)*

- trajectory lines: trajstyle Lines
- trajectory tubes: trajstyle Tubes
- trajectory all disable trajmode 0 0; trajmode 1 0; trajmode 2 0
- trajectory all enable trajmode 0 1; trajmode 1 1; trajmode 2 1
- trajectory incoming disable trajmode 1 0
- trajectory incoming enable trajmode 1 1
- trajectory outgoing disable trajmode 2 0
- trajectory outgoing enable trajmode 2 1
- trajectory inactive disable trajmode 0 0
- trajectory inactive enable trajmode 0 1
- focus on flight S K 2 3 1: airplane focus SK231
- focus on flight S K 2 3 2: airplane focus SK232
- focus on flight S K 2 3 4: airplane focus SK234

Summary: Voice interaction*

- **Speech synthesis works quite well**
 - Allows for easy informative feedback
- **Speech recognition is harder**
 - General case still impossible
- **Defined command set can be worked with**
 - Recognition rates can be very high
 - Still not perfect