Virtual Reality Technology and Programming

TNM053:
Lecture 9: Interaction Techniques for VR
2D and 3D interaction

- 2D interaction
 - Straightforward since commonly used
 - Pointing device controls interaction point
 - Pick 2D objects as regions of plane
 - Measure 2D interactions

- 3D interaction with 2D pointer
 - All of 2D but in 3D context - object picking
 - Difficulties resolving depth and selected objects
 - Navigation - Control of the camera
VR interaction

- Lots of similarity to 3D
- Difference due to immersion
 - More interaction mechanisms available
- Added ‘natural’ responses
 - due to ‘presence’
 - Mutual dependence on presence
Fundamental forms of interaction

- Movement (of camera)
- Selection:
 - of objects
 - of controls (widgets)
- Manipulation (of objects)
- Scaling of the scene
- Virtual menu and widget interaction
Natural interaction

- Immersive display
 - should give us ‘real world’ interaction
- In reality they don’t:
 - Most displays externalize the world
 - Workbench and wall are just like monitors
 - Caves are more immersive
 - Usually cave surrounded by the scene, not in it!
- Only tracked HMD meets requirements of full immersion
Wall/Workbench display

Screen

Tracked volume
Wall/ Workbench display
Cave - more immersive

- Range limited to the box size
- Often much of the ‘scene’ is outside the box
Only HMD’s are fully immersive but...

- They have limitations in display...
 - Slow updates leading to disorientation
 - Limited field of view
 - Cybersickness
- ...and in tracking...
 - Range limited to a few metres or less
 - Usually no less limited than a cave
- ...and in cables for the displays
Movement (Navigation)

- Essential to control camera point
- Head tracking
 - Used in motion parallax
 - And in limited head motion
- Camera translation – moving the box
 - Use navigation metaphors
 - Direction and speed control required
Movement - direction

- Gaze-directed
- Hand-directed
- Physical controls
- Virtual controls
Gaze-directed motion

- Move in the direction of view
 - Feels quite natural
- Problems with navigation of view
 - Head and eyes are rarely aligned
 - Can’t watch the scene go by
- Rarely used in VR
 - Common in 3D (game) environments
 - Well-defined view direction
Hand-directed motion

- Pointing mode – a driving metaphor
 - User points in desired direction
 - Track hand directly (glove)
 - 5DOF required

- ‘Crosshair’ mode:
 - Use head/hand axis to move
 - Supposed to make it easier for a novice
 - Makes it hard to move and look sideways
 - Can use 3DOF devices
Tracking direction

Gaze directed

Crosshair

Hand directed
Physical controls

- Physical (not tracked) devices
- Buttons, knobs and sliders
 - Once very common (cheap and easy)
 - Not realistic - Lacks a natural mapping
- Realistic – part of the virtual world:
 - Steering wheels
 - Handlebars
 - Joysticks
- Has scope for force feedback
- Forthcoming exjobb on this in car simulation
Virtual Controls

- Instead of physical devices, use virtual
 - Virtual steering wheel
 - Virtual ‘flight-stick’
- Place where you want in the scene
- Hard to interact with
 - How do you use a steering wheel if you can’t grip it directly?
 - Harder to incorporate force-feedback
Controlling Speed

- Constant speed
- Constant acceleration
- Controlled speed
- Controlled acceleration
Constant speed

- What speed is the right speed?
 - Close up needs slow movement
 - Examination needs slow movement
 - Navigation typically calls for higher speed
- Not widely used
Constant acceleration

- Start slow and accelerate under...
 - Button control?
 - Hand control?
- Good for allowing user to...
 - Examine small details close up
 - Navigate across long distances
- Tendency to overshoot
 - Needs good depth cueing
Controlled speed or acceleration

- Provide access to a range of speeds
 - What range?
- Controlled how?
 - Hand controlled
 - Physical controls
Hand controlled speed/acceleration

- E.g. Distance head-hand determines it
 - Used with ‘crosshairs’ direction control
Hand controlled speed/acceleration

- Works well
 - Intuitive
 - Natural mapping to the virtual world

- Relies on proprioceptive sensation
 - Not very precise
 - Needs large ‘dead zone’
 - Limited dynamic range
Major problems with hand-related navigation

- Fatigue
 - Large-arm movement for navigation
 - Long periods of use (hours)
- Must be able to turn off navigation
- Long periods of use require other methods
 - Usually physical devices
Object driven navigation

- Build objects into the scene to move:
 - Lifts
 - Moving walkways/stairways
 - ‘stepping discs’ (teleporters)

- More exotic:
 - Attractors
 - Repellors

- Must know where people want to go
 - Virtual architecture?
Goal driven navigation

- Drive the view through a set of defined points
 - List or virtual map
- Requires that you know what is ‘interesting’ in the scene
 - Objects
 - Routes (passing interesting objects)
Goal driven navigation (2)

- User moves by selecting next point of interest:
 - From a list? (as used in VRML)
 - By selecting an object and moving to corresponding point?
- Teleport? - less ‘presence’
- Compute shortest (quickest) route to selected destination and auto-move
Orbital mode

■ Has specialized uses (in HMD or cave)
■ Rotate using head orientation:
 - Fix object in front of view
 - move around it by turning and tilting
■ Allows full examination of a single scene object (or cluster) without moving or navigating
■ Could still zoom
Orbital mode (2)
Navigation: Summary

- General applications
 - mostly rely on hand (crosshair) control
 - For both direction and speed
 - most natural(?)
- Real applications usually use a mixture
- Extended use needs physical controls
Interaction with the world

- Object selection
 - Picking objects
 - Manipulating selected objects
- Control interaction
 - Widgets: defining and using
Object selection in 3D graphics
Object selection in VR
Transform schemes

- Hardest part of using systems like this is the mass of coordinate transforms
- Rendering generates many transforms
- VR generates many more
 - stereo
 - tracking devices
Transformations

- Very complex layered transformation
 - Much difficulty hidden by modern systems
 - Stereo hidden in graphics library
 - Interactor results hidden from programmer

- You only have two frames
 - World
 - ‘CAVE’
CAVE lib frames

CAVENavConvertCAVEToWorld
CAVENavVectorConvertCAVEToWorld
Don’t!

It undoes some of the CAVE initialization for the display function

Moves the display into the wrong transform
Selection

- User probably needs to select objects
- How to specify selected object?
- Close range
 - Within ‘arms-reach’
 - Maybe user can move around the objects
- Long range
 - Outside natural arms reach
 - On the other side of the screen
 - More complex selection scheme required
Object picking

- Requires object intersection testing
 - Local probe with object
 - Remote ‘beam’ with object
- Simplest methods:
 - Range checking (from centroid)
 - Object plane intersection testing
 - Bounding box intersection
Intersection testing

- Within a coordinate frame
- Use vector mathematics to compute intersections
Selecting a sphere
Facet intersection testing

- In general we cannot use such a simple scheme
- We must test for intersection by more complex methods
- Must test for intersection using testing on the polygons making up the object
 - or a bounding box?
Facet intersection testing

- 3D space!

Repeat for every triangle in the object!

Can ignore back-faces with respect to pointer
Bounding box selection

- Can use (3D) bounding box to test
- Box must fit appropriately.
Overlaps

- What if your wand vector goes through many objects?
- Select them all?
- Select the nearest?
 - How?
 - Sort objects by distance and test?
 - Test all and sort intersections by distance?
 - Other?
Scene graphs!

- The scene graph knows everything about the objects in the 3D scene at one time
- Can depth sort them for you
- Can work out the intersections for you
- Can use hierarchy to define appropriate bounding boxes for you
- Can define which objects can and which can not be ‘picked’
Selection approaches

- How to interact with the scene
- Close up
- Far
- Sparsely populated scenes
- Packed scenes
Close-range selection

■ Bring hand/cursor to object
■ Very natural mode of interaction
■ Avoid problem of close-spaced objects
 - Can move easily to the objects
 - Reach into the space
 - Place pointer precisely within/on the object
Long-range selection

- Must select at a distance
- Selection requires a pointer
 - Could use gaze-directed selection
- What about multiple close-spaced objects at similar distance?
 - Problems determining object closest to pointer
 - Problems of occlusion of distant objects
- What about selecting multiple objects?
Long range selection (2)

- Simple in clear scene
- In complex scene can get problematic
- Other select/manipulate schemes needed like:
 - Fixed length pointer
 - Navigable ‘drone’
Long range selection (3)

- Long range selection requires:
 - Highlighting of current object
 - Clear view of objects and probes

- Gravity?
 - Pulls selector to specific objects
 - Allows user to move between objects

- Selection schemes application specific
Manipulation

- Having selected objects user might want to manipulate them
 - Rotate
 - Translate
- Centre of rotation
 - About object (centroid)
 - About virtual point of contact
- Again, what about action at a distance?
Manipulation: Close range

- Make centres of action at ‘hand’
 - Select object
 - Move ‘hand’ in 6DOF
 - Rotate and translate object accordingly

- Very natural, very intuitive
Manipulation: Long range

- What defines the centre of action?
 - Centroid of object?
 - Position of selection point?

- What defines the centre of rotation?
 - Position of selection?
 - Maybe ok for moving an object
 - Doesn’t allow for much rotation
 - Position of hand?
 - Better for rotation
 - Relies on the mouse metaphor
Scaling

- In addition we want to be able to scale
 - Expand around object of interest
- Use hand point and scale around that
 - Natural and easy
- Use selected object and scale about it
 - Use hand point as origin for 3D mouse
Manipulation: Summary

- Quite a few modes of action
- Long range manipulation is a problem
 - Especially in control of rotation
- Most applications use a mixture of these modes
Virtual widgets

- Analogous to widget sets used in 2D interfaces
- No limit on what can be used as a widget
 - Any imaginable object
 - Multi-dimensional menus are possible
 - No real guidance yet
 - Most interfaces look very familiar, like 2D

Most interfaces look very familiar, like 2D
Floating menus
COVISE in four-wall cave
Menu dimensionality

- 1D movement of device selects from a circular list
 - Twist
 - Turn
 - Spin

- Could be very natural in a tracked glove environment
 - Gesture driven – Johnny Mnemonic

- Could use other shapes for additional items
 - Sphere? Cylinder? Cube?
 - Hierarchical?
Widget examples
Interface problems

- Occlusion of the display
 - Large displayed widgets block display
 - Resolution problems
 - Good placement vital
 - Context-dependent pop-ups useful

- Bad display damages sense of presence

- Distance problems:
 - Change of focal distance
 - Tiring for the user’s eyes
3D palette
Palm device interfaces

- (Bluetooth?) wireless devices
- Acts as a palette for widgets
- Added interface for interaction
- Tracked
- Tablet PC?
 - With stereo?
Case Study: Air Traffic Management

- Wish to view air traffic flow
- Wish to modify planned routes (waypoints)
- Need to be able to examine
 - Space around airport
 - Space around a specific aircraft
 - Space around a specific waypoint
 - Space around an arbitrary point
Navigational needs

- Select location of points of interest:
 - Airport
 - Aircraft
 - Arbitrary point in the scene

- Navigate around point:
 - Rotate in 2DOF (L-R/U-D)
 - Zoom in and out
 - Scale display (exaggerate altitude)
Navigational modes
Rotation around point

- Camera point transition
 - Made within the scene
 - Long range jumps made by zooming out
 - Instantaneous transition within view

- Camera rotation
 - Use Physical rotation of pointer device
 - Use angling of pointer device
Selection needs

- Selection of navigational points
 - Airport - List
 - Aircraft - Select with pointing device
 - Arbitrary point - use surface crosshair

- Selection of interactive points
 - Select waypoints
 - Insert new ones
Selection of waypoints

- Use wand pointer
- Use ‘gravity’
 - Snap to close point (waypoint/aeroplane)
- Click and hold to move selected point
- Double-click and hold to insert point
Final interface

Select view point:
- Engage wand
- Select new centre of rotation:
 - Scene point
 - Waypoint
 - Aircraft

Select and move waypoint

Navigate

Joystick

Zoom
ATM: Additional feedback

- Aircraft and waypoints have additional information which must be presented
- Achieved through pop-up window
 - Currently at fixed depth in the scene
 - Not very satisfactory - tiring for the eyes
Minority Report

- Stunning VR interface
- Actually 2D but 3D interaction
- Uses hand and head (eye?) tracking
- Uses gestures
- Uses modal virtual widgets

- Also demonstrates the importance of being able to turn the interface off!
In the year 2054 a murder is about to be committed...
MR: Selection Metaphor
MR: Gestures
MR Gestures (2)
MR: Virtual Widgets
Navigation and interaction using VR features is tricky:
- Many possibilities...
- ...But few guidelines

Lots of potential problems:
- Fatigue
- Complex navigation points

Important to analyse application
- Navigational requirements
- Interaction requirements
- Features in the application display