Sorting in Space

Multidimensional, Spatial, and Metric Data Structures for Computer Graphics Applications

Hanan Samet
hjs@cs.umd.edu
http://www.cs.umd.edu/~hjs

Department of Computer Science
University of Maryland
College Park, MD 20742, USA

These notes may not be reproduced by any means (mechanical or electronic or any other) or posted on any web site without the express written permission of Hanan Samet

Unless explicitly stated otherwise, the upper-left corner of each slide indicates the page numbers in \textit{Foundations of Multidimensional and Metric Data Structures} by H. Samet, Morgan-Kaufmann, San Francisco, 2006, where more details on the topic can be found
TITLE:

Sorting in Space: Multidimensional, Spatial, and Metric Data Structures for Computer Graphics Applications

Hanan Samet
Computer Science Department
Center for Automation Research
Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland 20742
e-mail: hjs@cs.umd.edu
url: http://www.cs.umd.edu/~hjs

SUMMARY STATEMENT:

We show how to represent spatial data using techniques that sort the data with respect to the space that it occupies. These techniques include quadtrees, octrees, and bounding volume hierarchies and are useful for speeding-up operations involving search in all computer graphics applications including games, ray tracing, and solid modeling.

COURSE ABSTRACT:

The representation of spatial data is an important issue in game programming, computer graphics, visualization, solid modeling, and related areas including computer vision and geographic information systems (GIS). A wide number of representations is currently in use. Recently, there has been much interest in hierarchical data structures such as quadtrees, octrees, and pyramids which are based on image hierarchies, as well methods that make use of bounding boxes which are based on object hierarchies. The key advantage of these representations is that they provide a way to index into space. In fact, they are little more than multidimensional sorts. They are compact and depending on the nature of the spatial data they save space as well as time and also facilitate operations such as search.

In this course we provide a brief overview of hierarchical spatial data structures and related algorithms that make use of them. We describe hierarchical representations of points, lines, collections of small rectangles, regions, surfaces, and volumes. For region data, we point out the dimension-reduction property of the region quadtree and octree, as how to navigate between nodes in the same tree, thereby leading to the popularity of these representations in ray tracing applications. We also demonstrate how to use these representations for both raster and vector data. In the case of nonregion data, we show how these data structures can be used to compute nearest objects in an incremental fashion so that the number of objects need not be known in advance. We also review a number of different tessellations and show why hierarchical decomposition into squares instead of triangles or hexagons is preferred. In addition a demonstration of the SAND spatial browser based on the SAND spatial database system and of the VASCO JAVA applet illustrating these methods (found at http://www.cs.umd.edu/~hjs/quadtree/index.html is presented.
PREREQUISITE:

A familiarity with computer terminology and some programming experience.

COURSE LEVEL:

Beginner

INTENDED AUDIENCE:

Practitioners working in computer graphics will be given a different perspective on data structures found to be useful in most applications. Game developers and technical managers will appreciate the presentation and methods described herein.

COURSE SYLLABUS:

1. Introduction
 a. Sorting definition
 b. Sample queries
 c. Spatial Indexing
 d. Sorting approach
 e. Minimum bounding rectangles (e.g., R-tree)
 f. Disjoint cells (e.g., R+-tree, k-d-B-tree)
 g. Uniform grid
 h. Region quadtree
 i. Space ordering methods
 j. Pyramid
 k. Region quadtrees vs. pyramids

2. Points
 a. Point quadtree
 b. PR quadtree
 c. Sorting points
 d. K-d tree
 e. PR k-d tree

3. Lines
 a. Strip tree
 b. MX quadtree for regions
4. Regions
 a. Region quadtree
 b. Dimension reduction
 c. Tessellations
 d. Bintree
 e. Generalized bintree
 f. XY-tree, treemap, puzzletree
 g. BSP tree

5. Bounding Box Hierarchies
 a. Overview
 b. Minimum bounding rectangles (e.g., R-trees)
 c. Searching in an R-tree
 d. Node overflows
 e. Examples of node overflow policies

6. Rectangles
 a. MX-CIF quadtree
 b. Loose quadtree or coverage fieldtree
 c. Partition fieldtree

7. Surfaces and Volumes
 a. Restricted quadtree
 b. Region octree
 c. PM octree

8. Metric Data
 a. vp-tree
 b. gh-tree
 c. mb-tree

9. Operations
 a. Incremental nearest object location
 b. Region quadtree Boolean set operations
c. Region quadtree nearest neighbor finding

10. Example system
 a. SAND internet browser
 b. JAVA spatial data applets

COURSE MATERIALS
Participants receive a copy of the slides. In addition, there is a web site at http://www.cs.umd.edu/~hjs/quadtree/index.html where applets demonstrating much of the material in the course are available. Participants are referred to the text: H. Samet, Foundations of Multidimensional and Metric Data Structures, Morgan-Kaufmann, San Francisco, 2006. Participants also have the opportunity to obtain the book at a discount of 20% as reflected at http://www.cs.umd.edu/~hjs/multidimensional-book-flyer.pdf

SPEAKER BIOGRAPHY

Hanan Samet received the B.S. degree in engineering from the University of California, Los Angeles, and the M.S. Degree in operations research and the M.S. and Ph.D. degrees in computer science from Stanford University, Stanford, CA. He is a Fellow of the IEEE, ACM, and IAPR (International Association for Pattern Recognition).

In 1975 he joined the Computer Science Department at the University of Maryland, College Park, where he is now a Professor. He is a member of the Computer Vision Laboratory of the Center for Automation Research and also has an appointment in the University of Maryland Institute for Advanced Computer Studies. At the Computer Vision Laboratory he leads a number of research projects on the use of hierarchical data structures for geographic information systems. His research group has developed the QUILT system which is a GIS based on hierarchical spatial data structures such as quadtrees and octrees, the SAND system which integrates spatial and non-spatial data, the SAND Spatial Browser which enables browsing through a spatial database using a graphical user interface, the VASCO spatial indexing applet (found at http://www.cs.umd.edu/~hjs/quadtree/index.html), a symbolic image database system, and the STEWARD spatio-textual document search engine.

His research interests are data structures, computer graphics, geographic information systems, computer vision, robotics, and database management systems. He is the author of the recent book titled Foundations of Multidimensional and Metric Data Structures (http://www.mkp.com/multidimensional) published by Morgan-Kaufmann, an imprint of Elsevier, in 2006, and of the first two books on spatial data structures titled Design and Analysis of Spatial Data Structures, and Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS, both published by Addison-Wesley in 1990. He is an Area Editor of Graphical Models and Image Processing and on the Editorial Board of Image Understanding, Journal of Visual Languages, and GeoInformatica. He is the co-general chair of the 15th and 16th ACM International Symposium on Advances in Geographic Information Systems (ACM GIS 2007 and ACM GIS 2008) and is the founding chair of the ACM Special Interest Group on Spatial Information (SIGSPATIAL). In 1989-1991 he served as the Capital Region Representative to the ACM and
was a member of the ACM Council. He received a best paper award in the 2008 ACM SIGMOD Conference.
Outline

1. Introduction
2. Points
3. Lines
4. Regions, Volumes, and Surfaces
5. Bounding Box Hierarchies
6. Rectangles
7. Surfaces and Volumes
8. Metric Data
9. Operations
10. Example system
Why Sorting of Spatial Data is Important

- Most operations invariably involve search
- Search is sped up by sorting the data
- **sort** - Definition: verb
 1. to put in a certain place or rank according to kind, class, or nature
 2. to arrange according to characteristics
- Examples
 1. Warnock algorithm: sorting objects for display
 - vector: hidden-line elimination
 - raster: hidden-surface elimination
 2. Back-to-front and front-to-back algorithms
 3. BSP trees for visibility determination
 4. Accelerating ray tracing and ray casting by finding ray-object intersections
 5. Bounding box hierarchies arrange space according to whether occupied or unoccupied

Copyright 2008 by Hanan Samet
1. Fine for one-dimensional data
 - sort people by weight and find closest in weight to Bill and can also find closest in weight to Larry
 - sort cities by distance from Chicago and find closest to Chicago but cannot find closest to New York unless resort

2. Hard for two-dimensions as higher as notion of ordering does not exist unless a dominance relation holds
 - point \(a = \{a_i | 1 \leq i \leq d\} \) dominates point \(b = \{b_i | 1 \leq i \leq d\} \) if \(a_i \leq b_i, 1 \leq i \leq d \).
 - \(a \) does not dominate \(b \) but dominates \(c \)

3. Only solution is to linearize data as in a space-filling curve
 - sort is explicit
 - need implicit sort so no need to resort if reference point changes
EXAMPLE QUERIES ON LINE SEGMENT DATABASES

• Queries about line segments
 1. All segments that intersect a given point or set of points
 2. All segments that have a given set of endpoints
 3. All segments that intersect a given line segment
 4. All segments that are coincident with a given line segment

• Proximity queries
 1. The nearest line segment to a given point
 2. All segments within a given distance from a given point (also known as a range or window query)

• Queries involving attributes of line segments
 1. Given a point, find the closest line segment of a particular type
 2. Given a point, find the minimum enclosing polygon whose constituent line segments are all of a given type
 3. Given a point, find all the polygons that are incident on it
WHAT MAKES CONTINUOUS SPATIAL DATA DIFFERENT

1. Spatial extent of the objects is the key to the difference

2. A record in a DBMS may be considered as a point in a multidimensional space
 - a line can be transformed (i.e., represented) as a point in 4-d space with (x_1, y_1, x_2, y_2)
 - good for queries about the line segments
 - not good for proximity queries since points outside the object are not mapped into the higher dimensional space
 - representative points of two objects that are physically close to each other in the original space (e.g., 2-d for lines) may be very far from each other in the higher dimensional space (e.g., 4-d)
 - Ex:
 - problem is that the transformation only transforms the space occupied by the objects and not the rest of the space (e.g., the query point)
 - can overcome by projecting back to original space

3. Use an index that sorts based upon spatial occupancy (i.e., extent of the objects)
SPATIAL INDEXING REQUIREMENTS

1. Compatibility with the data being stored
2. Choose an appropriate zero or reference point
3. Need an implicit rather than an explicit index
 • impossible to foresee all possible queries in advance
 • cannot have an attribute for every possible spatial relationship
 a. derive adjacency relations
 b. 2-d strings capture a subset of adjacencies
 • all rows
 • all columns
 • implicit index is better as an explicit index which, for example, sorts two-dimensional data on the basis of distance from a given point is impractical as it is inapplicable to other points
 • implicit means that don't have to resort the data for queries other than updates
SORTING ON THE BASIS OF SPATIAL OCCUPANCY

- Decompose the space from which the data is drawn into regions called *buckets* (like hashing but preserves order)

- Interested in methods that are designed specifically for the spatial data type being stored

- Basic approaches to decomposing space

 1. minimum bounding rectangles
 - e.g., R-tree or AABB (axis-aligned) and OBB (arbitrary orientation)
 - good at distinguishing empty and non-empty space
 - drawbacks:
 a. non-disjoint decomposition of space
 - may need to search entire space
 b. inability to correlate occupied and unoccupied space in two maps

 2. disjoint cells
 - drawback: objects may be reported more than once
 - uniform grid
 a. all cells the same size
 b. drawback: possibility of many sparse cells
 - adaptive grid — quadtrees
 a. regular decomposition
 b. all cells of width power of 2
 - partitions at arbitrary positions
 a. drawback: not a regular decomposition
 b. e.g., R+-tree

- Can use as approximations in filter/refine query processing strategy
MINIMUM BOUNDING RECTANGLES

- Objects grouped into hierarchies, stored in a structure similar to a B-tree
- Drawback: not a disjoint decomposition of space
- Object has single bounding rectangle, yet area that it spans may be included in several bounding rectangles
- Examples include the R-tree and the R*-tree
- Order \((m,M)\) R-tree
 1. between \(m \leq \lceil M/2 \rceil\) and \(M\) entries in each node except root
 2. at least 2 entries in root unless a leaf node
SEARCHING FOR A POINT OR LINE SEGMENT IN AN R-TREE

- Drawback is that may have to examine many nodes since a line segment can be contained in the covering rectangles of many nodes yet its record is contained in only one leaf node (e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

- Q is in R0
- Q can be in both R1 and R2
- Searching R1 first means that R4 is searched but this leads to failure even though Q is part of i which is in R4
- Searching R2 finds that Q can only be in R5
DISJOINT CELLS

- Objects decomposed into disjoint subobjects; each subobject in different cell
- Techniques differ in degree of regularity
- Drawback: in order to determine area covered by object, must retrieve all cells that it occupies
- R+-tree (also k-d-B-tree) and cell tree are examples of this technique
K-D-B-TREES

- Rectangular embedding space is hierarchically decomposed into disjoint rectangular regions
- No dead space in the sense that at any level of the tree, entire embedding space is covered by one of the nodes
- Blocks of k-d tree partition of space are aggregated into nodes of a finite capacity
- When a node overflows, it is split along one of the axes
- Originally developed to store points but may be extended to non-point objects represented by their minimum bounding boxes
- Drawback: in order to determine area covered by object, must retrieve all cells that it occupies
UNIFORM GRID

- Ideal for uniformly distributed data
- Supports set-theoretic operations
- Spatial data (e.g., line segment data) is rarely uniformly distributed
QUADTREES

- Hierarchical variable resolution data structure based on regular decomposition
- Many different decomposition schemes and applicable to different data types:
 1. points
 2. lines
 3. regions
 4. rectangles
 5. surfaces
 6. volumes
 7. higher dimensions including time
 - changes meaning of nearest
 a. nearest in time, **OR**
 b. nearest in distance
- Can handle both raster and vector data as just a spatial index
- Shape is usually independent of order of inserting data
- Ex: region quadtree
- A decomposition into blocks — not necessarily a tree!
REGION QUADTREE

- Repeatedly subdivide until obtain homogeneous region
- For a binary image (BLACK ≡ 1 and WHITE ≡ 0)
- Can also use for multicolored data (e.g., a landuse class map associating colors with crops)
- Can also define data structure for grayscale images
- A collection of maximal blocks of size power of two and placed at predetermined positions
 1. could implement as a list of blocks each of which has a unique pair of numbers:
 - concatenate sequence of 2 bit codes corresponding to the path from the root to the block’s node
 - the level of the block’s node
 2. does not have to be implemented as a tree
 - tree good for logarithmic access
- A variable resolution data structure in contrast to a pyramid (i.e., a complete quadtree) which is a multiresolution data structure

```
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 0 0
0 0 1 1 1 0 0 0
```

```
   A
 NW  NE  SE  SW
 C   D   E
 F G H I J K L M N O P Q
 37 38 39 40 57 58 59 60
```
Ordering Space

- Many ways of laying out the addresses corresponding to the locations in space of the cells each having its own mapping function
- Can use one of many possible space-filling curves
- Important to distinguish between address and location or cell
- Address of a location or cell \equiv physical location (e.g., in memory, on disk, etc.), if any, where some of the information associated with the location or cell is stored
CONVERTING BETWEEN POINTS AND CURVES

• Need to know size of image for all but the Morton order

• Relatively easy for all but the Peano-Hilbert order which is difficult (although possible) to decode and encode to obtain the corresponding \(x \) and \(y \) coordinate values

• Morton order

 1. use bit interleaving of binary representation of the \(x \) and \(y \) coordinates of the point

 2. also known as Z-order

 3. Ex: Atlanta \((6, 1)\)
STABILITY OF SPACE ORDERING METHODS

- An order is *stable* if the relative order of the individual pixels is maintained when the resolution (i.e., the size of the space in which the cells are embedded) is doubled or halved.

- Morton order is stable while the Peano-Hilbert order is not.

- **Ex:**

 Morton:

 ![Morton Diagram]

 Peano-Hilbert:

 ![Peano-Hilbert Diagram]

- Result of doubling the resolution (i.e., the coverage) in which case the circled points do not maintain the same relative order in the Peano-Hilbert order while they do in the Morton order.
DESIRABLE PROPERTIES OF SPACE FILLING CURVES

1. Pass through each point in the space once and only once

2. Two points that are neighbors in space are neighbors along the curve and vice versa
 • impossible to satisfy for all points at all resolutions

3. Easy to retrieve neighbors of a point

4. Curve should be stable as the space grows and contracts by powers of two with the same origin
 • yes for Morton and Cantor orders
 • no for row, row-prime, Peano-Hilbert, and spiral orders

5. Curve should be admissible
 • at each step at least one horizontal and one vertical neighbor must have already been encountered
 • used by active border algorithms - e.g., connected component labeling algorithm
 • row, Morton, and Cantor orders are admissible
 • Peano-Hilbert order is not admissible
 • row-prime and spiral orders are admissible if permit the direction of the horizontal and vertical neighbors to vary from point to point

6. Easy to convert between two-dimensional data and the curve and vice-versa
 • easy for Morton order
 • difficult for Peano-Hilbert order
 • relatively easy for row, row-prime, Cantor, and spiral orders
PYRAMID

- Internal nodes contain summary of information in nodes below them
- Useful for avoiding inspecting nodes where there could be no relevant information
QUADTREES VS. PYRAMIDS

- Quadtrees are good for location-based queries
 1. e.g., what is at location x?
 2. not good if looking for a particular feature as have to examine every block or location asking “are you the one I am looking for?”

- Pyramid is good for feature-based queries — e.g.,
 1. does wheat exist in region x?
 - if wheat does not appear at the root node, then impossible to find it in the rest of the structure and the search can cease
 2. report all crops in region x — just look at the root
 3. select all locations where wheat is grown
 - only descend node if there is possibility that wheat is in one of its four sons — implies little wasted work

- Ex: truncated pyramid where 4 identically-colored sons are merged

- Can represent as a list of leaf and nonleaf blocks (e.g., as a linear quadtree)
Outline

1. Introduction
2. Points
3. Lines
4. Regions, Volumes, and Surfaces
5. Bounding Box Hierarchies
6. Rectangles
7. Surfaces and Volumes
8. Metric Data
9. Operations
10. Example system
• Marriage between a uniform grid and a binary search tree
1. Regular decomposition point representation
2. Decomposition occurs whenever a block contains more than one point
3. Useful when the domain of data points is not discrete but finite
4. Maximum level of decomposition depends on the minimum separation between two points
 • if two points are very close, then decomposition can be very deep
 • can be overcome by viewing blocks as buckets with capacity c and only decomposing the block when it contains more than c points

Ex: $c = 1$
REGION SEARCH

- Ex: Find all points within radius r of point A

Use of quadtree results in pruning the search space

- If a quadrant subdivision point p lies in a region l, then search the quadrants of p specified by l

1. SE 6. NE 11. All but SW
2. SE, SW 7. NE, NW 12. All but SE
3. SW 8. NW 13. All
4. SE, NE 9. All but NW
5. SW, NW 10. All but NE
Finding the Nearest Object

- Ex: find the nearest object to \(P \)

Assume \(PR \) quadtree for points (i.e., at most one point per block)
- Search neighbors of block 1 in counterclockwise order
- Points are sorted with respect to the space they occupy which enables pruning the search space
- Algorithm:
 1. start at block 2 and compute distance to \(P \) from \(A \)
 2. ignore block 3 whether or not it is empty as \(A \) is closer to \(P \) than any point in 3
 3. examine block 4 as distance to SW corner is shorter than the distance from \(P \) to \(A \); however, reject \(B \) as it is further from \(P \) than \(A \)
 4. ignore blocks 6, 7, 8, 9, and 10 as the minimum distance to them from \(P \) is greater than the distance from \(P \) to \(A \)
 5. examine block 11 as the distance from \(P \) to the southern border of 1 is shorter than the distance from \(P \) to \(A \); however, reject \(F \) as it is further from \(P \) than \(A \)
- If \(F \) was moved, a better order would have started with block 11, the southern neighbor of 1, as it is closest
K-D TREE (Bentley)

- Test one attribute at a time instead of all simultaneously as in the point quadtree
- Usually cycle through all the attributes
- Shape of the tree depends on the order in which the data is encountered
PR K-D TREE (Knowlton)

- A region contains at most one data point
- Analogous to EXCELL with bucket size of 1
Outline

1. Introduction
2. Points
3. Lines
4. Regions, Volumes, and Surfaces
5. Bounding Box Hierarchies
6. Rectangles
7. Surfaces and Volumes
8. Metric Data
9. Operations
10. Example system
STRIP TREE (Ballard, Peucker)

- Top-down hierarchical curve approximation
- Rectangle strips of arbitrary orientation
- Assume curve is continuous
- Ex:

```
  X_P  Y_P  X_Q  Y_Q  W_L  W_R
  A
  B
  C
  D
```

- **Contact points** = where the curve touches the box
 1. not tangent points
 2. curve need not be differentiable - just continuous

- Terminate when all rectangles are of width ≤ W
SPECIAL CASES

1. Closed curve

2. Curve extends beyond its endpoints
 - enclosed by a rectangle
 - split into two rectangular strips
APPLICATIONS

1. Curve intersection

 ![Diagram of curve intersection]

 - NULL
 - CLEAR
 - POSSIBLE

2. Union of two curves

 ![Diagram of union of two curves]

 - not possible as the result may fail to be continuous

3. Others
 - length
 - area of a closed curve
 - intersection of curves with areas
 - etc.

Copyright © 2007 by Hanan Samet
MX QUADTREE FOR REGIONS (Hunter)

• Represent the boundary as a sequence of BLACK pixels in a region quadtree

• Useful for a simple digitized polygon (i.e., non-intersecting edges)

• Three types of nodes
 1. interior - treat like WHITE nodes
 2. exterior - treat like WHITE nodes
 3. boundary - the edge of the polygon passes through them and treated like BLACK nodes

• Disadvantages
 1. a thickness is associated with the line segments
 2. no more than 4 lines can meet at a point
PM1 QUADTREE

- Vertex-based (one vertex per block)

DECOMPOSITION RULE:
Partitioning occurs when a block contains more than one segment unless all the segments are incident at the same vertex which is also in the same block

- Shape independent of order of insertion
PM2 QUADTREE

- Vertex-based (one vertex per block)

DECOMPOSITION RULE:
Partitioning occurs when a block contains more than one line segment unless all the segments are incident at the same vertex (the vertex can be in another block!)
- Shape independent of order of insertion
PM3 QUADTREE

- Vertex-based (one vertex per block)

DECOMPOSITION RULE:
Partitioning occurs when a block contains more than one vertex (i.e., a PR quadtree with edges)
- Shape independent of order of insertion
PMR QUADTREE

- Edge-based
- Avoids having to split many times when two vertices or lines are very close as in PM1 quadtree
- Probabilistic splitting and merging rules
- Uses a splitting threshold value — say N

Ex: $N = 2$

DECOMPOSITION RULE:
Split a block once if upon insertion the number of segments intersecting a block exceeds N

Merge a block with its siblings if the total number of line segments intersecting them is less than N

- Merges can be performed more than once
- Does not guarantee that each block will contain at most N line segments
- Splitting threshold is not the same as bucket capacity
- Shape depends on order of insertion
Triangulations

- PM₂ quadtree is quite useful vis-a-vis PM₁ quadtree
- Given a triangle table, only need to store at most a single vertex with each cell and can reconstruct mesh with the aid of clipping
- Example triangular mesh

![PM₁ quadtree](image1)
![PM₂ quadtree](image2)

- Can also formulate a PM-triangle quadtree variant
Outline

1. Introduction
2. Points
3. Lines
4. Regions, Volumes, and Surfaces
5. Bounding Box Hierarchies
6. Rectangles
7. Surfaces and Volumes
8. Metric Data
9. Operations
10. Example system
REGION QUADTREE

- Repeatedly subdivide until obtain homogeneous region
- For a binary image (BLACK ≡ 1 and WHITE ≡ 0)
- Can also use for multicolored data (e.g., a landuse class map associating colors with crops)
- Can also define data structure for grayscale images
- A collection of maximal blocks of size power of two and placed at predetermined positions
 1. could implement as a list of blocks each of which has a unique pair of numbers:
 - concatenate sequence of 2 bit codes corresponding to the path from the root to the block’s node
 - the level of the block’s node
 2. does not have to be implemented as a tree
 - tree good for logarithmic access
- A variable resolution data structure in contrast to a pyramid (i.e., a complete quadtree) which is a multiresolution data structure
SPACE REQUIREMENTS

1. Rationale for using quadtrees/octrees is not so much for saving space but for saving execution time

2. Execution time of standard image processing algorithms that are based on traversing the entire image and performing a computation at each image element is proportional to the number of blocks in the decomposition of the image rather than their size
 • aggregation of space leads directly to execution time savings as the aggregate (i.e., block) is visited just once instead of once for each image element (i.e., pixel, voxel) in the aggregate (e.g., connected component labeling)

3. If want to save space, then, in general, statistical image compression methods are superior
 • drawback: statistical methods are not progressive as need to transmit the entire image whereas quadtrees lend themselves to progressive approximation
 • quadtrees, though, do achieve compression as a result of use of common subexpression elimination techniques
 a. e.g., checkerboard image
 b. see also vector quantization

4. Sensitive to positioning of the origin of the decomposition
 • for an \(n \times n \) image, the optimal positioning requires an \(O(n^2 \log_2 n) \) dynamic programming algorithm (Li, Grosky, and Jain)
DIMENSION REDUCTION

1. Number of blocks necessary to store a simple polygon as a region quadtree is proportional to its perimeter (Hunter)
 - implies that many quadtree algorithms execute in $O(\text{perimeter})$ time as they are tree traversals
 - the region quadtree is a dimension reducing device as perimeter (ignoring fractal effects) is a one-dimensional measure and we are starting with two-dimensional data
 - generalizes to higher dimensions
 a. region octree takes $O(\text{surface area})$ time and space (Meagher)
 b. d-dimensional data take time and space proportional to a $O(\text{d-1})$-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space requirements double as the resolution doubles
 - in contrast with quadrupling in the array representation
 - for a region octree the space requirements quadruple as the resolution doubles
 - ex.

 - easy to see dependence on perimeter as decomposition only takes place on the boundary as the resolution increases
ALTERNATIVE DECOMPOSITION METHODS

• A planar decomposition for image representation should be:
 1. infinitely repetitive
 2. infinitely decomposable into successively finer patterns
• Classification of tilings (Bell, Diaz, Holroyd, and Jackson)
 1. isohedral — all tiles are equivalent under the symmetry group of the tiling (i.e., when stand in one tile and look around, the view is independent of the tile)
 2. regular — each tile is a regular polygon
• There are 81 types if classify by their symmetry groups
• Only 11 types if classify by their adjacency structure

- [3.12^2] means 3 edges at the first vertex of the polygonal tile followed by 12 edges at the next two vertices
PROPERTIES OF TILINGS — SIMILARITY

- Similarity — a tile at level \(k \) has the same shape as a tile at level 0 (basic tile shape)

- Limited \(\equiv \) NOT similar (i.e., cannot be decomposed infinitely into smaller tiles of the same shape)

- Unlimited: each edge of each tile lies on an infinitely straight line composed entirely of edges

- Only 4 unlimited tilings \([4^4], [6^3], [4.8^2], \) and \([4.6.12]\)

- Two additional hierarchies:

Note: \([4.8^2]\) and \([4.6.12]\) are not regular
PROPERTIES OF TILINGS — ADJACENCY

- Adjacency — two tiles are neighbors if they are adjacent along an edge or at a vertex

- Uniform adjacency \(\equiv \) distances between the centroid of one tile and the centroids of all its neighbors are the same

- Adjacency number of a tiling \((A)\) \(\equiv \) number of different adjacency distances

\[
\begin{align*}
[3^6] & \quad A=1 \\
[4^4] & \quad A=2 \\
[6^3] & \quad A=3
\end{align*}
\]
PROPERTIES OF TILINGS — UNIFORM ORIENTATION

• Uniform orientation

• All tiles with the same orientation can be mapped into each other by translations of the plane which do not involve rotation for reflection

Conclusion:

• [4⁴] has a lower adjacency number than [6³]
• [4⁴] has a uniform orientation while [6³] does not
• [4⁴] is unlimited while [3⁶] is limited

Use [4⁴]!
Bintree

- Regular decomposition k-d tree
- Cycle through attributes
Generalized Bintree

- Regular decomposition k-d tree but no need to cycle through attributes
- Need to record identity of partition axis at each nonleaf node
X-Y Tree, Treemap, and Puzzletree

- Split into two or more parts at each partition step
- Implies no two successive partitions along the same attribute as they are combined
- Implies cycle through attributes in two dimensions
Three-Dimensional X-Y Tree, Treemap, and Puzzletree

- No longer require cycling through dimensions as this results in losing some perceptually appealing block combinations
Bintree compared with X-Y Tree, Treemap, Puzzletree

- Much more decomposition in bintree
BSP TREES (Fuchs, Kedem, Naylor)

- Like a bintree except that the decomposition lines are at arbitrary orientations (i.e., they need not be parallel or orthogonal)
- For data of arbitrary dimensions
- In 2D (3D), partition along the edges (faces) of a polygon (polyhedron)
- Ex: arrows indicate direction of positive area

- Usually used for hidden-surface elimination
 1. domain is a set of polygons in three dimensions
 2. position of viewpoint determines the order in which the BSP tree is traversed
- A polygon’s plane is extended infinitely to partition the entire space
DRAWBACKS OF BSP TREES

• A polygon may be included in both the left and right subtrees of node

• Same issues of duplicate reporting as in representations based on a disjoint decomposition of the underlying space

• Shape of the BSP tree depends on the order in which the polygons are processed and on the polygons chosen to serve as the partitioning plane

• Not based on a regular decomposition thereby complicating the performance of set-theoretic operations

• Ex: use line segments in two dimensions

1. partition induced by choosing B as the root

2. partition induced by choosing C as the root
Outline

1. Introduction
2. Points
3. Lines
4. Regions, Volumes, and Surfaces
5. Bounding Box Hierarchies
6. Rectangles
7. Surfaces and Volumes
8. Metric Data
9. Operations
10. Example system
Bounding Box Hierarchies

1. Axis-aligned bounding boxes (AABB)

2. Oriented bounding boxes (OBB)
 - Arbitrary orientation for bounding hyperrectangles

3. Minimum bounding hyperspheres (sphere tree, SS-tree)

4. Combination of hyperspheres and hyperrectangles (SR-tree)

5. 3-dimensional pie slices (BOXTREE)

6. Truncated tetrahedra (prism tree)
Bounding Box Hierarchies

1. Axis-aligned bounding boxes (AABB)

2. Oriented bounding boxes (OBB)
 - Arbitrary orientation for bounding hyperrectangles

3. Minimum bounding hyperspheres (sphere tree, SS-tree)

4. Combination of hyperspheres and hyperrectangles (SR-tree)

5. 3-dimensional pie slices (BOXTREE)

6. Truncated tetrahedra (prism tree)
Bounding Box Hierarchies

1. Axis-aligned bounding boxes (AABB)

2. Oriented bounding boxes (OBB)
 - Arbitrary orientation for bounding hyperrectangles

3. Minimum bounding hyperspheres (sphere tree, SS-tree)

4. Combination of hyperspheres and hyperrectangles (SR-tree)

5. 3-dimensional pie slices (BOXTREE)

6. Truncated tetrahedra (prism tree)
Bounding Box Hierarchies

1. Axis-aligned bounding boxes (AABB)

2. Oriented bounding boxes (OBB)
 - Arbitrary orientation for bounding hyperrectangles

3. Minimum bounding hyperspheres (sphere tree, SS-tree)

4. Combination of hyperspheres and hyperrectangles (SR-tree)

5. 3-dimensional pie slices (BOXTREE)

6. Truncated tetrahedra (prism tree)
Bounding Box Hierarchies

1. Axis-aligned bounding boxes (AABB)

2. Oriented bounding boxes (OBB)
 - Arbitrary orientation for bounding hyperrectangles

3. Minimum bounding hyperspheres (sphere tree, SS-tree)

4. Combination of hyperspheres and hyperrectangles (SR-tree)

5. 3-dimensional pie slices (BOXTREE)

6. Truncated tetrahedra (prism tree)
Bounding Box Hierarchies

1. Axis-aligned bounding boxes (AABB)

2. Oriented bounding boxes (OBB)
 - Arbitrary orientation for bounding hyperrectangles

3. Minimum bounding hyperspheres (sphere tree, SS-tree)

4. Combination of hyperspheres and hyperrectangles (SR-tree)

5. 3-dimensional pie slices (BOXTREE)

6. Truncated tetrahedra (prism tree)
MINIMUM BOUNDING RECTANGLES

- Rectangles grouped into hierarchies, stored in another structure such as a B-tree
- Drawback: not a disjoint decomposition of space
- Rectangle has single bounding rectangle, yet area it spans may be included in several bounding rectangles
- May have to visit several rectangles to determine the presence/absence of a rectangle
- Order \((m, M)\) R-tree
 1. between \(m \leq \lceil M/2 \rceil\) and \(M\) entries in each node except root
 2. at least 2 entries in root unless a leaf node
- Ex: order (2,3) R-tree
• Drawback is that may have to examine many nodes since a rectangle can be contained in the covering rectangles of many nodes yet its record is contained in only one leaf node (e.g., D in R0, R1, R2, R3, and R5)

Ex: Search for the rectangle containing point Q

- Q is in R0
- Q can be in both R1 and R2
- Searching R1 first means that R3 is searched but this leads to failure even though Q is in a part of D which is in R3
- Searching R2 finds that Q can only be in R5
Dynamic R-Tree Construction

- Differ by how to split overflowing node p upon insertion

- Conflicting goals
 1. Reduce likelihood that each node q is visited by the search
 - achieve by minimizing total area spanned by bounding box of q (coverage)
 2. minimize number of children of p that must be visited by search operations
 - achieve by minimizing area common to children so that the area that they span is not visited a multiple number of times (overlap)
EXAMPLE DYNAMIC SPLITTING METHODS

1. Methods based on reducing coverage:
 - exhaustive search
 - quadratic
 - linear

2. R*-tree
 - minimize overlap in leaf nodes
 - Minimize coverage in nonleaf nodes
 - also reduces coverage by minimizing perimeter of bounding boxes of resulting nodes when effect on coverage is the same
 - when node overflows, first see if can avoid problem by reinserting a fraction of the nodes (e.g., 30%)

3. Ang/Tan: linear with focus on reduction of overlap

4. Packed methods that make use of an ordering
 - usually order centroids of bounding boxes of objects and build a B+-tree
 a. Hilbert packed R-tree: Peano-Hilbert order
 b. Morton packed R-tree: Morton order
 - node overflow
 a. goals of minimizing coverage or overlap are not part of the splitting process
 b. do not make use of spatial extent of bounding boxes in determining how to split a node
R-TREE OVERFLOW NODE SPLITTING POLICIES

- Could use exhaustive search to look at all possible partitions

- Usually two stages:
 1. pick a pair of bounding boxes to serve as seeds for resulting nodes (‘seed-picking’)
 2. redistribute remaining nodes with goal of minimizing the growth of the total area (‘seed-growing’)

- Different algorithms of varying time complexity
 1. quadratic:
 - find two boxes j and k that would waste the most area if they were in the same node
 - for each remaining box i, determine the increase in area d_{ij} and d_{ik} of the bounding boxes of j and k resulting from the addition of i and add the box r for which $|d_{ij} - d_{rk}|$ is a maximum to the node with the smallest increase in area
 - rationale: find box with most preference for one of j, k
 2. linear:
 - find two boxes with greatest normalized separation along all of the dimensions
 - add remaining boxes in arbitrary order to box whose area is increased the least by the addition
 3. linear (Ang/Tan)
 - minimizes overlap
 - for each dimension, associate each box with the closest face of the box of the overflowing node
 - pick partition that has most even distribution
 a. if a tie, minimize overlap
 b. if a tie, minimize coverage
R*-TREE

- Tries to minimize overlap in case of leaf nodes and minimize increase in area for nonleaf nodes

- Changes from R-tree:
 1. insert into leaf node p for which the resulting bounding box has minimum increase in overlap with bounding boxes of p’s brothers
 - compare with R-tree where insert into leaf node for which increase in area is a minimum (minimizes coverage)

 2. in case of overflow in p, instead of splitting p as in R-tree, reinsert a fraction of objects in p
 - known as ‘forced reinsertion’ and similar to ‘deferred splitting’ or ‘rotation’ in B-trees
 - how do we pick objects to be reinserted? possibly sort by distance from center of p and reinsert furthest ones

 3. in case of true overflow, use a two-stage process
 - determine the axis along which the split takes place
 a. sort bounding boxes for each axis to get d lists
 b. choose the axis having the split value for which the sum of the perimeters of the bounding boxes of the resulting nodes is the smallest while still satisfying the capacity constraints (reduces coverage)
 - determine the position of the split
 a. position where overlap between two nodes is minimized
 b. resolve ties by minimizing total area of bounding boxes (reduces coverage)

- Works very well but takes time due to reinsertion
EXAMPLE OF R-TREE NODE SPLITTING POLICIES

• Sample collection of 1700 lines using $m=20$ and $M=50$
Outline

1. Introduction
2. Points
3. Lines
4. Regions, Volumes, and Surfaces
5. Bounding Box Hierarchies
6. Rectangles
7. Surfaces and Volumes
8. Metric Data
9. Operations
10. Example system
MX-CIF QUADTREE (Kedem)

1. Collections of small rectangles for VLSI applications
2. Each rectangle is associated with its minimum enclosing quadtree block
3. Like hashing: quadtree blocks serve as hash buckets
4. Collision = more than one rectangle in a block
 - resolve by using two one-dimensional MX-CIF trees to store the rectangle intersecting the lines passing through each subdivision point
 - one for y-axis
 - if a rectangle intersects both x and y axes, then associate it with the y axis
 - one for x-axis

Binary tree for y-axis through A

Binary tree for x-axis through A
Loose Quadtree (Octree)/Cover Fieldtree

- Overcomes drawback of MX-CIF quadtree that the width w of the minimum enclosing quadtree block of a rectangle o is not a function of the size of o

- Instead, it depends on the position of the centroid of o and often considerably larger than o

- Solution: expand size of space spanned by each quadtree block of width w by expansion factor p ($p > 0$) so expanded block is of width $(1 + p)w$

 1. $p = 0.3$
 2. $p = 1.0$

- Maximum w (i.e., minimum depth of minimum enclosing quadtree block) is a function of p and radius r of o and independent of position of centroid of o

 1. Range of possible ratios $w/2r$:

 $1/(1 + p) \cdot w/2r < 2/p$

 2. For $p \geq 1$, restricting w and r to powers of 2, $w/2r$ takes on at most 2 values and usually just 1
Partition Fieldtree

- Alternative to loose quadtree (octree)/cover fieldtree at overcoming drawback of MX-CIF quadtree that the width w of the minimum enclosing quadtree block of a rectangle o is not a function of the size of o

- Achieves similar result by shifting positions of the centroid of quadtree blocks at successive levels of the subdivision by one half of the width of the block that is being subdivided

- Subdivision rule guarantees that width of minimum enclosing quadtree block for rectangle o is bounded by 8 times the maximum extent r of o

- Same ratio is obtained for the loose quadtree (octree)/cover fieldtree when $p = 1/4$, and thus partition fieldtree is superior to the cover fieldtree when $p < 1/4$

- Summary: cover fieldtree expands the width of the quadtree blocks while the partition fieldtree shifts the positions of their centroids
Outline

1. Introduction
2. Points
3. Lines
4. Regions, Volumes, and Surfaces
5. Bounding Box Hierarchies
6. Rectangles
7. Surfaces and Volumes
8. Metric Data
9. Operations
10. Example system
HIERARCHICAL RECTANGULAR DECOMPOSITION

- Similar to triangular decomposition
- Good when data points are the vertices of a rectangular grid
- Drawback is absence of continuity between adjacent patches of unequal width (termed the alignment problem)

- Overcoming the presence of cracks
 1. use the interpolated point instead of the true point (Barrera and Hinjosa)
 2. triangulate the squares (Von Herzen and Barr)
 - can split into 2, 4, or 8 triangles depending on how many lines are drawn through the midpoint
 - if split into 2 triangles, then cracks still remain
 - no cracks if split into 4 or 8 triangles
RESTRICTED QUADTREE (VON HERZEN/BARR)

- All 4-adjacent blocks are either of equal size or of ratio 2:1

 Note: also used in finite element analysis to adaptively refine an element as well as to achieve element compatibility (termed *h-refinement* by Kela, Perucchio, and Voelcker)

- 8-triangle decomposition rule
 1. decompose each block into 8 triangles (i.e., 2 triangles per edge)
 2. unless the edge is shared by a larger block
 3. in which case only 1 triangle is formed

- 4-triangle decomposition rule
 1. decompose each block into 4 triangles (i.e., 1 triangle per edge)
 2. unless the edge is shared by a smaller block
 3. in which case 2 triangles are formed along the edge

- Prefer 8-triangle rule as it is better for display applications (shading)
OCTREES

1. Interior (voxels)
 • analogous to region quadtree
 • approximate object by aggregating similar voxels
 • good for medical images but not for objects with planar faces

 Ex:

2. Boundary (PM octrees)
 • adaptation of PM quadtree to three-dimensional data
 • decompose until each block contains
 a. one face
 b. more than one face but all meet at same edge
 c. more than one edge but all meet at same vertex
 • impose spatial index on a boundary model (BRep)
Outline

1. Introduction
2. Points
3. Lines
4. Regions, Volumes, and Surfaces
5. Bounding Box Hierarchies
6. Rectangles
7. Surfaces and Volumes
8. Metric Data
9. Operations
10. Example system
Basic Definitions

1. Often only information available is a distance function indicating degree of similarity (or dis-similarity) between all pairs of N data objects.

2. Distance metric d: objects must reside in finite metric space (S, d) where for o_1, o_2, o_3 in S, d must satisfy:
 - $d(o_1, o_2) = d(o_2, o_1)$ (symmetry)
 - $d(o_1, o_2) \geq 0$, $d(o_1, o_2) = 0$ iff $o_1 = o_2$ (non-negativity)
 - $d(o_1, o_3) \leq d(o_1, o_2) + d(o_2, o_3)$ (triangle inequality)

3. Triangle inequality is a key property for pruning search space.
 - Computing distance is expensive.

4. Non-negativity property enables ignoring negative values in derivations.
Pivots

- Identify a distinguished object or subset of the objects termed *pivots* or *vantage points*
 1. sort remaining objects based on
 a. distances from the pivots, or
 b. which pivot is the closest
 2. and build index
 3. use index to achieve pruning of other objects during search

- Given pivot $p \in S$, for all objects $o \in S' \subseteq S$, we know:
 1. exact value of $d(p, o)$,
 2. $d(p, o)$ lies within range $[r_{lo}, r_{hi}]$ of values (ball partitioning) or
 - drawback is asymmetry of partition as outer shell is usually narrow
 3. o is closer to p than to some other object $p_2 \in S$ (generalized hyperplane partitioning)

- Distances from pivots are useful in pruning the search
vp-Tree (Metric Tree; Uhlmann|Yianilos)

- Ball partitioning method
- Pick p from S and let r be median of distances of other objects from p
- Partition S into two sets S_1 and S_2 where:

\[
S_1 = \{ o \in S \setminus \{p\} \mid d(p, o) < r \}
\]
\[
S_2 = \{ o \in S \setminus \{p\} \mid d(p, o) \geq r \}
\]

- Apply recursively, yielding a binary tree with pivot and radius values at internal nodes
- Choosing pivots
 1. simplest is to pick at random
 2. choose a random sample and then select median
vp-Tree Example
gh-Tree (Metric Tree; Uhlmann)

- Generalized hyperplane partitioning method
- Pick p_1 and p_2 from S and partition S into two sets S_1 and S_2 where:

\[
S_1 = \{ o \in S \setminus \{p_1, p_2\} \mid d(p_1, o) \leq d(p_2, o) \} \\
S_2 = \{ o \in S \setminus \{p_1, p_2\} \mid d(p_2, o) < d(p_1, o) \}
\]

- Objects in S_1 are closer to p_1 than to p_2 (or equidistant from both), and objects in S_2 are closer to p_2 than to p_1
 - hyperplane corresponds to all points o satisfying $d(p_1, o) = d(p_2, o)$
 - can also “move” hyperplane, by using $d(p_1, o) = d(p_2, o) + m$
- Apply recursively, yielding a binary tree with two pivots at internal nodes
gh-Tree Example

(a)

(b)
mb-Tree (Dehne/Noltemeier)

1. Inherit one pivot from ancestor node
2. Fewer pivots and fewer distance computations but perhaps deeper tree
3. Like bucket (k) PR k-d tree as split whenever region has $k > 1$ objects but region partitions are implicit (defined by pivot objects) instead of explicit
Comparison of mb-tree (BSP tree) and PR k-d tree

PR k-d tree
- Partition of underlying space analogous to that of BSP tree for points

mb-tree
Outline

1. Introduction
2. Points
3. Lines
4. Regions, Volumes, and Surfaces
5. Bounding Box Hierarchies
6. Rectangles
7. Surfaces and Volumes
8. Metric Data
9. Operations
10. Example system
Incremental Nearest Neighbors (Hjaltason/Samet)

Motivation

1. often don’t know in advance how many neighbors will need
2. e.g., want nearest city to Chicago with population > 1 million

Several approaches

1. guess some area range around Chicago and check populations of cities in range
 - if find a city with population > 1 million, must make sure that there are no other cities that are closer with population > 1 million
 - inefficient as have to guess size of area to search
 - problem with guessing is we may choose too small a region or too large a region
 a. if size too small, area may not contain any cities with right population and need to expand the search region
 b. if size too large, may be examining many cities needlessly
2. sort all the cities by distance from Chicago
 - impractical as we need to re-sort them each time pose a similar query with respect to another city
 - also sorting is overkill when only need first few neighbors
3. find k closest neighbors and check population condition
Mechanics of Incremental Nearest Neighbor Algorithm

- Make use of a search hierarchy (e.g., tree) where
 1. objects at lowest level
 2. object approximations are at next level (e.g., bounding boxes in an R-tree)
 3. nonleaf nodes in a tree-based index

- Traverse search hierarchy in a “best-first” manner similar to A*-algorithm instead of more traditional depth-first or breadth-first manners
 1. at each step, visit element with smallest distance from query object among all unvisited elements in the search hierarchy
 - i.e., all unvisited elements whose parents have been visited
 2. use a global list of elements, organized by their distance from query object
 - use a priority queue as it supports necessary insert and delete minimum operations
 - ties in distance: priority to lower type numbers
 - if still tied, priority to elements deeper in search hierarchy
Incremental Nearest Neighbor Algorithm

Algorithm:

\[\text{INC\text{NEAREST}}(Q, S, T) \]

1. \(Q \leftarrow \text{NEW\text{PRIORITY\text{QUEUE}}}(\)
2. \(e_t \leftarrow \text{root of the search hierarchy induced by } q, S, \text{ and } T \)
3. \(\text{ENQUEUE}(Q, e_t, 0) \)
4. while not \(\text{ISEMPTY}(Q) \) do
5. \(e_t \leftarrow \text{DEQUEUE}(Q) \)
6. if \(t = 0 \) then /* \(e_t \) is an object */
7. \(\text{Report } e_t \text{ as the next nearest object} \)
8. else
9. for each child element \(e_{t'} \) of \(e_t \) do
10. \(\text{ENQUEUE}(Q, e_{t'}, d_{t'}(q, e_{t'})) \)

1. Lines 1-3 initialize priority queue with root
2. In main loop take element \(e_t \) closest to \(q \) off the queue
 - report \(e_t \) as next nearest object if \(e_t \) is an object
 - otherwise, insert child elements of \(e_t \) into priority queue
Example of IncNEAREST

- Initially, algorithm descends tree to leaf node containing q
 - expand n
 - expand n₁
- Start growing search region
 - expand n₃
 - report e as nearest neighbor
VASCO Spatial Applet

Complexity Analysis

- Algorithm is I/O optimal
 - no nodes outside search region are accessed
 - better pruning than branch and bound algorithm

- Observations for finding k nearest neighbors for uniformly-distributed two-dimensional points
 - expected # of points on priority queue: $O(\sqrt{k})$
 - expected # of leaf nodes intersecting search region: $O(k + \sqrt{k})$

- In worst case, priority queue will be as large as entire data set
 - e.g., when data objects are all nearly equidistant from query object
 - probability of worst case very low, as it depends on a particular configuration of both the data objects and the query object (but: curse of dimensionality!)
SET OPERATIONS ON QUADTREES

- **UNION(S,T)**: traverse S and T in tandem
 1. **GRAY(S)**
 2. **GRAY(T)** recursively process subtrees and merge if all resulting sons are **BLACK**
 3. **BLACK(S)**
 4. **WHITE(S)**
 5. **BLACK(T)**
 6. **WHITE(T)**

- **INTERSECTION**: interchange roles of **BLACK** and **WHITE** in **UNION**

- Execution time is bounded by sum of nodes in two input trees but may be less if don't create a new copy as really just the sum of the minimum of the number of nodes at corresponding levels of the two quadtrees

- More efficient than vectors as make use of global data
 1. vectors require a sort for efficiency
 2. region quadtree is already sorted
NEIGHBOR FINDING OPERATIONS USING QUADTREES

• Many image processing operations involve traversing an image and applying an operation to a pixel and some of its neighboring (i.e., adjacent) pixels

• For quadtree/octree representations replace pixel/voxel by block

• Neighbor is defined to be an adjacent block of greater than or equal size

• Desirable to be able to locate neighbors in a manner that
 1. is position-independent
 2. is size-independent
 3. makes no use of additional links to adjacent nodes (e.g., ropes and nets a la Hunter)
 4. just uses the structure of the tree or configuration of the blocks

• Some block configurations are impossible, thereby simplifying a number of algorithms
 1. impossible for a node A to have two larger neighbors B and C on directly opposite sides or touching corners
 2. partial overlap of two blocks B and C with A is impossible since a quadtree is constructed by recursively splitting blocks into blocks that have side lengths that are powers of 2
FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as the direction of the neighbor (ADJ)

2. Otherwise, the father F is the nearest common ancestor and retrace the path starting at F making mirror image moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

```
ode procedure EQUAL_LATERAL_NEIGHBOR(P, D);
/* Find = size neighbor of P in direction D */
begin
    value pointer node P;
    value direction D;
    return(SON(if ADJ(D, SONTYPE(P)) then
        EQUAL_LATERAL_NEIGHBOR(FATHER(P), D)
    else [FATHER(P)],
        REFLECT(D, SONTYPE(P))));
end;
```

Copyright © 2007 by Hanan Samet
ANALYSIS OF NEIGHBOR FINDING

1. Bottom-up random image model where each pixel has an equal probability of being black or white
 • probability of the existence of a 2x2 block at a particular position is 1/8
 • OK for a checkerboard image but inappropriate for maps as it means that there is a very low probability of aggregation
 • problem is that such a model assumes independence
 • in contrast, a pixel’s value is typically related to that of its neighbors

2. Top-down random image model where the probability of a node being black or white is \(p \) and 1-2\(p \) for being gray
 • model does not make provisions for merging
 • uses a branching process model and analysis is in terms of extinct branching processes

3. Use a model based on positions of the blocks in the decomposition
 • a block is equally likely to be at any position and depth in the tree
 • compute an average case based on all the possible positions of a block of size 1x1, 2x2, 4x4, etc.
 • 1 case at depth 0, 4 cases at depth 1, 16 cases at depth 2, etc.
 • this is not a realizable situation but in practice does model the image accurately
ANALYSIS OF FINDING LATERAL NEIGHBORS

2\(^3\)·(2\(^3\)−1) neighbor pairs of equal sized nodes in direction E
NCA = nearest common ancestor

1–8 have NCA at level 3
9–24 have NCA at level 2
25–56 have NCA at level 1

Theorem: average number of nodes visited by EQUAL_LATERAL_NEIGHBOR is ≤ 4

Proof:

• Let node A be at level i (i.e., a 2\(^i\)×2\(^i\) block)

• There are 2\(^{n−i}\)·(2\(^{n−i}\)−1) possible positions for node A such that an equal sized neighbor exists in a given horizontal or vertical direction

 2\(^{n−i}\) rows
 2\(^{n−i}\)−1 adjacencies per row
 2\(^{n−i}\)·2\(^0\) have NCA at level n
 2\(^{n−i}\)·2\(^1\) have NCA at level n−1
 ...
 2\(^{n−i}\)·2\(^{n−i−1}\) have NCA at level i+1

• For node A at level [\(i\)] direction D, and the NCA at level [\(j\), 2\(^{(j−i)}\)] nodes are visited in locating an equal-sized neighbor at level [\(i\)]

\[\sum_{i=0}^{n-1} \sum_{j=i+1}^{n} 2^{n-i} \cdot 2^{n-j} \cdot 2 \cdot (j - i) \]

\[\sum_{i=0}^{n-1} 2^{n-i} \cdot (2^{n-i} - 1) \]

nodes are visited on the average ≤ 4
Outline

1. Introduction
2. Points
3. Lines
4. Regions, Volumes, and Surfaces
5. Bounding Box Hierarchies
6. Rectangles
7. Surfaces and Volumes
8. Metric Data
9. Operations
10. Example system
VASCO Spatial Applet

SAND Internet Browser

http://www.cs.umd.edu/~brabec/sandjava/

Copyright 2008 by Hanan Samet
References

A Sorting Approach to Indexing Spatial Data*

HANAN SAMET
Center for Automation Research
Institute for Advanced Computer Studies
Computer Science Department
University of Maryland
College Park, Maryland 20742, USA
hjs@cs.umd.edu http://www.cs.umd.edu/~hjs

May 18, 2008

Abstract

Spatial data is distinguished from conventional data by having extent. Therefore, spatial queries involve both the objects and the space that they occupy. The handling of queries that involve spatial data is facilitated by building an index on the data. The traditional role of the index is to sort the data, which means that it orders the data. However, since generally no ordering exists in dimensions greater than 1 without a transformation of the data to one dimension, the role of the sort process is one of differentiating between the data and what is usually done is to sort the spatial objects with respect to the space that they occupy. The resulting ordering is usually implicit rather than explicit so that the data need not be resorted (i.e., the index need not be rebuilt) when the queries change (e.g., the query reference objects). The index is said to order the space and the characteristics of such indexes are explored further.

1 Introduction

The representation of multidimensional data is an important issue in solid modeling as well as in many other diverse fields including computer-aided design (CAD), computational geometry, finite-element analysis, and computer graphics (e.g., [44, 45, 47]). The main motivation in choosing an appropriate representation is to facilitate operations such as search. This means that the representation involves sorting the data in some manner to make it more accessible. In fact, the term access structure or index is often used as an alternative to the term data structure in order to emphasize the importance of the connection to sorting.

The most common definition of “multidimensional data” is a collection of points in a higher dimensional space (i.e., greater than 1). These points can represent locations and objects in space as well as more general records where each attribute (i.e., field) corresponds to a dimension and only some, or even none, of the attributes are locational. As an example of nonlocational point data, consider an employee record that has attributes corresponding to the employee’s name, address, gender, age, height, weight, and social security number (i.e., identity number). Such records arise in database management systems and can be treated as points in, for example, a seven-dimensional space (i.e., there is one dimension for each attribute), although the different dimensions have different type units (i.e., name and address are strings of characters; gender is binary; while age, height, weight, and social security number are numbers some of which have are associated with different units). Note that the address attribute could also be interpreted in a locational sense using positioning coordinates such as latitude and longitude readings although the stringlike symbolic representation is far more common.

*This work was supported in part by the National Science Foundation under Grants EIA-00-91474, CCF-05-15241, and IIS-07-13501, Microsoft Research, NVIDIA, and the University of Maryland General Research Board.
When multidimensional data corresponds to locational data, we have the additional property that all of
the attributes usually have the same unit (possibly with the aid of scaling transformations), which is distance
in space. In this case, we can combine the distance-denominated attributes and pose queries that involve
proximity. For example, we may wish to find the closest city to Chicago within the two-dimensional space
from which the locations of the cities are drawn. Another query seeks to find all cities within 50 miles of
Chicago. In contrast, such queries are not very meaningful when the attributes do not have the same type.
Nevertheless, other queries such as range queries that seek, for example, all individuals born between 1940
and 1960 whose weight ranges between 150 and 200 pounds are quite common and can be posed regardless
of the nature of the attributes.

When the range of multidimensional data spans a continuous physical space (i.e., an infinite collection of
locations), the issues become more interesting. In particular, we are no longer just interested in the locations
of objects, but, in addition, we are also interested in the space that they occupy (i.e., their extent). Some
example objects with extent include lines (e.g., roads, rivers), intervals (which can correspond to time as well
as space), regions of varying shape and dimensionality (e.g., lakes, counties, buildings, crop maps, polygons,
polyhedra), and surfaces. The objects (when they are not points) may be disjoint or could even overlap.

The fact that the objects have extent has a direct effect on the type of indexes that we need. This can
be best understood by examining the nature of the queries that we wish to support. For example, consider
a database of objects. There are three types of queries that can be posed to such a database. The first is
the set of queries about the objects themselves such as finding all objects that contain a given point or set
of points, have a non-empty intersection with a given object, have a partial boundary in common, have a
boundary in common, have any points in common, contain a given object, included in a given object, etc.
The second consists of proximity queries such as the nearest object to a given point or object, and all objects
within a given distance of a point or object (also known as a range or window query). The third consists of
queries involving non-spatial attributes of objects such as given a point or object, finding the nearest object
of a particular type, the minimum enclosing object of a particular type, or all the objects of a particular type
whose boundary passes through it.

Being able to support the different types of queries described above has a direct effect on the type of
indexes that are useful for such data. In particular, recall our earlier observation that a record in a conventional
database may be considered as a point in a multidimensional space. For example, a straight line segment
object having endpoints \((x_1, y_1)\) and \((x_2, y_2)\) can be transformed (i.e., represented) as the point \((x_1, y_1, x_2, y_2)\)
in a 4-d space (termed a corner transformation [50])\(^1\). This representation is good for queries about the line
segments (the first type), while it is not good for proximity queries (i.e., the second and third type) since
points outside the object are not mapped into the higher dimensional space. In particular, the representative
points of two objects that are physically close to each other in the original space (e.g., 2-d for lines) may be
very far from each other in the higher dimensional space (e.g., 4-d), thereby leading to large search regions.
This is especially true if there is a great difference in the relative size of the two objects (e.g., a short line
in proximity to a long line as in Figure 1). On the other hand, when the objects are small (e.g., their extent
is small), then the method works reasonably well as the objects are basically point objects. The problem
is that the transformation only transforms the space occupied by the objects and not the rest of the space
(e.g., the query point). Proponents of the transformation method argue that this problem can be overcome by
projecting back to original space and indexing on the projection (e.g., [54]). However, at this point, it is not
unreasonable to ask why we bother to make the transformation in the first place.

![Figure 1: Example of two objects that are close to each other in the original space but are
not clustered in the same region of the transformed space when using a transformation such
as the corner transformation.](image-url)

\(^1\) Although for ease of visualization, our discussion and examples are in terms of line segment and rectangle objects, it is applicable
to data of arbitrary dimension such as polyhedra and hyperrectangles.
It is important to observe that our notion of sorting spatial objects is more one of differentiating between
the objects which is different from the conventional one which is intimately tied to the notion of providing
an ordering. As we know, such an ordering implies a linearization which restricts the underlying data to one
dimension, and such an ordering usually does not exist in dimensions d higher than one save for a dominance
relationship (e.g., [39]) where point $a = \{a_i | 1 \leq i \leq d\}$ is said to dominate point $b = \{b_i | 1 \leq i \leq d\}$ if
$b_i \leq a_i, 1 \leq i \leq d$. On the other hand, it is clear that the rationale for our discussion is that the data in which
we are interested is of dimension greater than one. This leads to the conclusion that what is needed is an index
that sorts (i.e., differentiates) between objects on the basis of spatial occupancy (i.e., their spatial extent). In
other words, it sorts the objects relative to the space that they occupy, and this is the focus of the rest of this
paper.

Before choosing a particular index we should also make sure that the following requirements are satisfied.
First of all, the index should be compatible with the type of data (i.e., spatial objects) that is being stored. In
other words, it should enable users to distinguish between different objects as well as render the search effi-
cient in terms of pruning irrelevant objects from further consideration. Second, we must have an appropriate
zero or reference point. In the case of spatial occupancy, this is usually some easily identified point or object
(e.g., the origin of the multidimensional space from which the objects are drawn). Most importantly, given
our observation about the absence of an ordering, it is best to have an implicit rather than an explicit index.

In particular, an implicit index is needed because it is impossible to foresee all possible queries in advance.
For example, in the case of spatial relationships such as left, right, up, down, etc. it is impractical to have a
data structure which has an attribute for every possible spatial relationship. In other words, the index should
support the ability to derive the spatial relationships between the objects. It should be clear that an implicit
index is superior to an explicit index, which, for example in the case of two-dimensional data such as the
locations of cities, sorts the cities on the basis of their distance from a given point. The problem is that
this sorting order is inapplicable to other reference points. In other words, having sorted all of the cities in
the US with respect to their distance from Chicago, the result is useless if we want to find the closest city
to New Orleans that satisfies a particular condition like having a population greater than 50,000 inhabitants.
Therefore, having an implicit index means that we don’t have to resort the data for queries other than updates.

2 Methods Based on Spatial Occupancy

![Diagram showing spatial indexing](image)

Figure 2: (a) Example collection of straight line segments embedded in a 4×4 grid, (b) the
object hierarchy for the R-tree corresponding to the objects in (a), and (c) the spatial extent
of the minimum bounding rectangles corresponding to the object hierarchy in (b). Notice that
the leaf nodes in (b) also store bounding rectangles although this is only shown for the nonleaf
nodes.

The indexing methods that are based on sorting the spatial objects by spatial occupancy essentially de-
compose the underlying space from which the data is drawn into regions called buckets in the spirit of classical
hashing methods, with the difference that the spatial indexing methods preserve order. In other words, objects
in close proximity should be placed in the same bucket or at least in buckets that are close to each other in the
sense of the order in which they would be accessed (i.e., retrieved from secondary storage in case of a false
hit, etc.).

There are two principal methods of representing spatial data. The first is to use an object hierarchy that initially aggregates objects into groups, preferably based on their spatial proximity, and then uses proximity to further aggregate the groups thereby forming a hierarchy, where the number of objects that are aggregated in each node of the hierarchy is permitted to range between parameters $m \leq \lceil M/2 \rceil$ and M. The rationale for choosing this type of a range is for the hierarchy to mimic the behavior of a B-tree (e.g., [15]), where each element of the hierarchy acts like a disk page and thus is guaranteed to be half full, provided that $m = \lceil M/2 \rceil$.

Note that the object hierarchy is not unique as it depends on the manner in which the objects were aggregated to form the hierarchy (e.g., minimizing overlap between objects or coverage of the underlying space). Queries are facilitated by also associating a minimum bounding box with each object and group of objects as this enables a quick way to test if a point can possibly lie within the area spanned by the object or group of objects. A negative answer means that no further processing is required for the object or group while a positive answer means that further tests must be performed. Thus the minimum bounding box serves to avoid wasting work. Equivalently, it serves to differentiate (i.e., “sort”) between occupied and unoccupied space. Data structures that make use of axis-aligned bounding boxes (AABB) such as the R-tree [23] and the R⁺-tree [10] illustrate the use of this method, as well as the more general oriented bounding box (OBB) where the sides are orthogonal, while no longer having to be parallel to the coordinate axes (e.g., [22, 40]). In addition, some data structures use other shapes for the bounding boxes such as spheres (e.g., SS-tree [35, 61]), combinations of hyperrectangles and hyperspheres (e.g., SR-tree [30]), truncated tetrahedra (e.g., prism tree [38]), as well as triangular pyramids which are 5-sided objects with two parallel triangular faces and three rectangular faces forming a three-dimensional pie slice (e.g., BOXTREE [9]). These data structures differ primarily in the properties of the bounding boxes, and their interrelationships, that they use to determine how to aggregate the bounding boxes, and, of course, the objects. Aggregation is an issue when the data structure is used in a dynamic environment, where objects are inserted and removed from the hierarchy thereby leading to elements that are full or sparse vis-à-vis the values of m and M.

As an example of an R-tree, consider the collection of straight line segment objects given in Figure 2(a) shown embedded in a 4×4 grid. Figure 2(b) is an example of the object hierarchy induced by an R-tree for this collection, with $m = 2$ and $M = 3$. Figure 2(c) shows the spatial extent of the bounding rectangles of the nodes in Figure 2(a), with heavy lines denoting the bounding rectangles corresponding to the leaf nodes, and broken lines denoting the bounding rectangles corresponding to the subtrees rooted at the nonleaf nodes.

The drawback of the object hierarchy approach is that from the perspective of a space decomposition method, the resulting hierarchy of bounding boxes often leads to a non-disjoint decomposition of the underlying space. This means that if a search fails to find an object in one path starting at the root, then it is not necessarily the case that the object will not be found in another path starting at the root. This is the case in Figure 2(c) when we search for the line segment object that contains Q. In particular, we first visit nodes R_1 and R_4 unsuccessfully, and thus need to visit nodes R_2 and R_5 in order to find the correct line segment object i.

The second method is based on a decomposition (usually recursive) of the underlying space into disjoint blocks so that a subset of the objects is associated with each block. There are several ways to proceed. The first is to simply redefine the decomposition and aggregation associated with the object hierarchy method so that the minimum bounding boxes are decomposed into disjoint boxes, thereby also implicitly partitioning the underlying objects that they bound. In this case, the partition of the underlying space is heavily dependent on the data and is said to be at arbitrary positions. The k-d-B-tree [42] and the R⁺-tree [51] are examples of such an approach, with the difference being that in the k-d-B-tree, the entire space which contains the objects is decomposed into subspaces and it is these subspaces that are aggregated, while in the R⁺-tree, it is the bounding boxes that are decomposed and subsequently aggregated.

Figure 3 is an example of one possible R⁺-tree for the collection of line segments in Figure 2(a). This particular tree is of order $(2,3)$ although in general it is not possible to guarantee that all nodes save for the root node will always have a minimum of 2 entries. In particular, the expected B-tree performance guarantees are not necessarily valid (i.e., pages are not guaranteed to be m/M full) unless we are willing to perform very complicated record insertion and deletion procedures. Notice that in this example line segment objects c, h, and i appear in two different nodes. Of course, other variants are possible since the R⁺-tree is not unique.
The second way is to partition the underlying space into cells (i.e., blocks) at fixed positions so that all resulting cells are of uniform size, which is the case when using the uniform grid (e.g., [11, 33, 43]), also the standard indexing method for maps. Figure 2(a) is an example of a 4×4 uniform grid in which a collection of straight line segments has been embedded. One drawback of the uniform grid is the possibility of a large number of empty or sparsely-filled cells when the objects are not uniformly distributed, as well as the possibility that most of the objects will lie in a small subset of the cells. This is resolved by making use of a variable resolution representation such as one of the quadtree variants (e.g., [47]) where the subset of the objects that are associated with the cells is defined by placing an upper bound on the number of objects that can be associated with each cell. The cells that comprise the underlying space are recursively decomposed into congruent sibling cells whenever this upper bound is exceeded. Therefore, the upper bound serves as a stopping condition for the recursive decomposition process. An alternative, as exemplified by the PK-tree [46, 58], makes use of a lower bound on the number of objects that can be associated with each cell (termed an instantiation or aggregation threshold). Depending on the underlying representation that is used, the result can also be viewed as a hierarchy of congruent cells (see, e.g., the pyramid structure [55] which is a family of representations that make use of multiple resolution which can be characterized as image hierarchies [47]).

The PR quadtree [36, 45] is one example of a variable resolution representation for point objects where the underlying space in which a set of point objects lie is recursively decomposed into four equal-sized square-shaped cells until each cell is empty or contains just one object. For example, Figure 4 is the PR quadtree for the set of point objects A–F and P. The PR quadtree represents the underlying decomposition as a tree although our figure only illustrates the resulting decomposition of the underlying space into cells (i.e., the leaf nodes/blocks of the PR quadtree).

Turning to more complex such objects such as line segments, which have extent, we consider the PM1 quadtree [49]. It is an example of a variable resolution representation for a collection of straight line segment objects such as the polygonal subdivision given in Figure 2(a). In this case, the stopping condition of its decomposition rule stipulates that partitioning occurs as long as a cell contains more than one line segment unless the line segments are all incident at the same vertex, which is also in the same cell (e.g., Figure 5(a)). The PM1 quadtree and its variants are ideal for representing polygonal meshes as they provide an access structure to enable the quick determination of the polygon that contains a given point (i.e., a point location operation). In particular, the PM2 quadtree [49], which differs from the PM1 quadtree by permitting a cell c to contain several line segments as long as they are incident at the same vertex v regardless of whether or not v is in c (e.g., Figure 5(b)), is particularly suitable for representing triangular meshes [16]. A similar representation to the PM1 quadtree has been devised for collections of three-dimensional objects such as.
Figure 4: Block decomposition induced by the PR quadtree for the point objects A–F and P.

polyhedra images (e.g., [8] and the references cited in [47]). The decomposition criteria are such that no cell contains more than one face, edge, or vertex unless the faces all meet at the same vertex or are adjacent to the same edge.

Figure 5: (a) PM$_1$ quadtree and (b) PM$_2$ quadtree for a collection of straight line segment objects that form a triangulation.

The above variants of the PM quadtree and PM octree represent an object by its boundary. The region quadtree [32] and region octree [27, 34] are variable resolution representations of objects by their interiors. In particular, the environment containing the objects is recursively decomposed into four or eight, respectively, rectangular congruent blocks until each block is either completely occupied by an object or is empty. For example, Figure 6(b) is the block decomposition for the region quadtree corresponding to the result of embedding the two-dimensional object in Figure 6(a) in an 8×8 grid, while Figure 7(b) is the block decomposition for the region octree corresponding to the three-dimensional staircaselike object in Figure 7(a).

Region octrees are also known as volumetric or voxel representations and are useful for medical applications. They are to be contrasted with procedural representations such as constructive solid geometry (CSG) [41] where primitive instances of objects are combined to form more complex objects by use of geometric transformations and regularized Boolean set operations (e.g., union, intersection). A disadvantage of the CSG representation is that it is not unique. In particular, there are frequently several ways of constructing an object (e.g., from different primitive elements). In addition, there is no overall notion of geometry except of the primitives that form each of the objects and thus there is no easy correlation between the objects and
the space in which they are embedded unless techniques such as the PM-CSG tree [62] are used.

Figure 6: (a) Sample object, and (b) its region quadtree block decomposition with the blocks of the object being shaded, assuming that it is embedded in an 8×8 grid.

Figure 7: (a) Example three-dimensional object, and (b) its region octree block decomposition.

The principal drawback of the disjoint method is that when the objects have extent (e.g., line segments, rectangles, and any other non-point objects), then an object is associated with more than one cell when the object has been decomposed. This means that queries such as those that seek the length of all objects in a particular spatial region will have to remove duplicate objects before reporting the total length. Nevertheless, methods have been developed that avoid these duplicates by making use of the geometry of the type of the data that is being represented (e.g., [4, 5, 17]). Note that the result of constraining the positions of the partitions means that there is a limit on the possible sizes of the resulting cells (e.g., a power of 2 in the case of a quadtree variant). However, the result is that the underlying representation is good for operations between two different data sets as their representations are in registration (i.e., it is easy to correlate occupied and unoccupied space in the two data sets, which is not easy when the positions of the partitions are not constrained as is the case with methods rooted in representations based on an object hierarchy even though the resulting decomposition of the underlying space is disjoint).

The PR, PM, and region quadtrees make use of a space hierarchy of where each level of the hierarchy contains congruent cells. The difference is that in the PR quadtree, each object is associated with just one cell, while in the PM and region quadtrees, the extent of the objects causes them to be decomposed into subobjects and thereby possibly be associated with more than one cell, although the cells are disjoint. At times, we want to use a space decomposition method that makes use of a hierarchy of congruent cells while still not decomposing the objects. In this case, we relax the disjointness requirement by stipulating that only the cells at a given level (i.e., depth) of the hierarchy must be disjoint. In particular, we recursively decompose the cells that comprise the underlying space into congruent sibling cells so that each object is associated with just one cell, and this is the smallest possible congruent cell that contains the object in its entirety. Assuming a top-down subdivision process that decomposes each cell into four square cells (i.e., a quadtree) at each level of decomposition, the result is that each object is associated with its minimum enclosing quadtree cell.
Subdivision ceases whenever a cell contains no objects. Alternatively, subdivision can also cease once a cell is smaller than a predetermined threshold size. This threshold is often chosen to be equal to the expected size of the objects. We use the term \textit{MX-CIF quadtree} [1, 31] (see also the multilayer grid file [53], R-file [28], filter tree [52], and SQ-histogram [3]) to describe such a decomposition method.

In order to simplify our presentation, we assume that the objects stored in the MX-CIF quadtree are rectangles, although the MX-CIF quadtree is applicable to arbitrary objects in arbitrary dimensions in which case it keeps track of their minimum bounding boxes. For example, Figure 8b is the tree representation of the MX-CIF quadtree for a collection of rectangle objects given in Figure 8a. Note that objects can be associated with both terminal and non-terminal nodes of the tree.

![Figure 8](image)

\begin{itemize}
 \item \textbf{(a)} Collection of rectangle objects and the cell decomposition induced by the MX-CIF quadtree;
 \item \textbf{(b)} the tree representation of \textbf{(a)}; the binary trees for the \textit{y} axes passing through the root of the tree in \textbf{(b)}, and through \textbf{(d)} the \textit{NE} son of the root of the tree in \textbf{(b)}.
\end{itemize}

Since there is no limit on the number of objects that are associated with a particular cell, an additional decomposition rule is sometimes provided to distinguish between these objects. For example, in the case of the MX-CIF quadtree, a one-dimensional analog of the two-dimensional decomposition rule is used. In particular, all objects that are associated with a given cell \(b \) are partitioned into two sets: those that intersect (or whose sides are collinear) with the vertical axis passing through the center of \(b \), and those that intersect (or whose sides are collinear) with the horizontal axis passing through the center of \(b \). Objects that intersect with the center of \(b \) are associated with the horizontal axis. Associated with each axis is a one-dimensional MX-CIF quadtree (i.e., a binary tree), where each object \(o \) is associated with the node that corresponds to \(o \)‘s minimum enclosing interval. For example, Figure 8c and Figure 8d illustrate the binary trees associated with the \textit{y} axes passing through the root and the \textit{NE} son of the root, respectively, of the MX-CIF quadtree of Figure 8b. Thus we see that the two-dimensional MX-CIF quadtree acts like a hashing function with the one-dimensional MX-CIF quadtree playing the role of a collision resolution technique.

The MX-CIF quadtree can be interpreted as an object hierarchy where the objects appear at different levels of the hierarchy and the congruent cells play the same role as the minimum bounding boxes. The difference is that the set of possible minimum bounding boxes is constrained to the set of possible congruent cells. Thus, we can view the MX-CIF quadtree as a variable resolution R-tree. An alternative interpretation is that the MX-CIF quadtree provides a variable number of grids, each one being at half the resolution of its immediate successor, where an object is associated with the grid whose cells have the tightest fit. In fact, this interpretation forms the basis of the \textit{filter tree} [52] and the \textit{multilayer grid file} [53] where the only difference from the MX-CIF quadtree is the nature of the access structure for the cells (i.e., a hierarchy of grids based on a regular decomposition for the filter tree and based on a grid file for the multilayer grid file, and a tree structure for the MX-CIF quadtree).

One of the main drawbacks of the MX-CIF quadtree is that the size (i.e., width \(w \)) of the cell \(c \) corresponding to the minimum enclosing quadtree cell of object \(o \)‘s minimum enclosing bounding box \(b \) is not a function of the size of \(b \) or \(o \). Instead, it is dependent on the position of \(o \). In fact, \(c \) is often considerably larger than \(b \) thereby causing inefficiency in search operations due to a reduction in the ability to prune objects from further consideration. This situation arises whenever \(b \) overlaps the axes lines that pass through
the center of \(c \), and thus \(w \) can be as large as the width of the entire underlying space.

There are several ways of overcoming this drawback. One easy way is to introduce redundancy (i.e.,
representing the object several times thereby replicating the number of references to it) by decomposing
the quadtree cell \(c \) into smaller quadtree cells, each of which minimally encloses some portion of \(o \) (or,
alternatively, some portion of \(o \)'s minimum enclosing bounding box \(b \)) and contains a reference to \(o \). The
expanded MX-CIF quadtree [2] is a simple example of such an approach where \(c \) is decomposed once into
four subblocks \(c_i \), which are then decomposed further until obtaining the minimum enclosing quadtree cell \(s_i
for the portion of \(o \), if any, that is covered by \(c_i \). A more general approach, used in spatial join algorithms [29],
sets a bound on the number of replications, (termed a size bound [37] and used in the GESS method [18])
or on the size of the covering quadtree cells resulting from the decomposition of \(c \) that contain the replicated
references (termed an error bound [37]).

Replicating the number of references to the objects is reminiscent of the manner in which the non-
disjointness of the decomposition of the underlying space resulting from the use of an object hierarchy was
overcome, and thus has the same shortcoming of possibly requiring the application of a duplicate object re-
moval step prior to reporting the answer to some queries. The cover fieldtree [19, 20], and the equivalent loose quadtree (loose octree in three dimensions) [57], adopt a different approach at overcoming the independence
of the sizes of \(c \) and \(b \) drawback. In particular, they do not replicate the objects. Instead, they expand the
size of the space that is spanned by each quadtree cell \(c \) of width \(w \) by a cell expansion factor \(p (p > 0) \) so
that the expanded cell is of width \((1 + p) \cdot w \). In this case, an object is associated with its minimum enclosing
expanded quadtree cell. It has been shown that given a quadtree cell \(c \) of width \(w \) and cell expansion factor \(p \),
the radius \(r \) of the minimum bounding box \(b \) of the smallest object \(o \) that could possibly be associated with
\(c \) must be greater than \(p w / 4 \) [57]. However, the utility of the loose quadtree is best evaluated in terms of the
inverse of this relation (i.e., the maximum possible width \(w \) of \(c \) given an object \(o \) with minimum bounding
box \(b \) of radius \(r \)) as reducing \(w \) is the primary motivation for the development of the loose quadtree as an
alternative to the MX-CIF quadtree.

It has been shown [48] that the maximum possible width \(w \) of \(c \) given an object \(o \) with minimum bounding
box \(b \) of radius \(r \) is just a function of \(r \) and \(p \) and is independent of the position of \(o \). More precisely, taking
the ratio of cell to bounding box width \(w / (2r) \), we have [48]:

\[
1/(1 + p) \leq w/(2r) \leq 1/p.
\]

In particular, the range of possible ratios of width \(w/(2r) \) as a function of \(p \) for \(p \geq 1 \) takes on at most two
values, and usually just one value [48].

The ideal value for \(p \) is 1 [57]. The rationale is that using cell expansion factors much smaller than 1
increases the likelihood that the minimum enclosing expanded quadtree cell is large (as is the case for the
MX-CIF quadtree, where \(p = 0 \)), and that letting \(p \) be much larger than 1 results in the areas spanned by the
expanded quadtree cells being too large, thereby having much overlap. For example, letting \(p = 1 \), Figure 9
is the loose quadtree corresponding to the collection of objects in Figure 8(a) and its MX-CIF quadtree in
Figure 8(b). In this example, there are only two differences between the loose and MX-CIF quadtrees:

1. Rectangle object \(E \) is associated with the SW child of the root of the loose quadtree instead of with the
root of the MX-CIF quadtree.

2. Rectangle object \(B \) is associated with the NW child of the NE child of the root of the loose quadtree
instead of with the NE child of the root of the MX-CIF quadtree.

Note that the loose quadtree (cover fieldtree) is not the only approach at overcoming the drawback of the
MX-CIF quadtree. In particular, the partition fieldtree [19, 20] is an alternative method of overcoming the
drawback of the MX-CIF quadtree. The partition fieldtree proceeds by shifting the positions of the centroids
of cells at successive levels of subdivision by one-half the width of the cell that is being subdivided. Figure 10
shows an example of such a subdivision. This subdivision rule guarantees that the width \(w \) of the minimum
enclosing quadtree cell for the minimum bounding box \(b \) for object \(o \) is bounded by eight times the maximum
extent \(r \) of \(b \) [20, 47]. The same ratio is obtained for the cover fieldtree when \(p = 1/4 \), and thus the partition
fieldtree is superior to the cover fieldtree when \(p < 1/4 \) [47].
3 Examples of the Utility of Sorting

As an example of the utility of sorting spatial data suppose that we want to determine the nearest object to a given point (i.e., a “pick” operation in computer graphics). In order to see how the search is facilitated by sorting the underlying data, consider the set of point objects A–F in Figure 4 which are stored in a PR quadtree [36, 45], and let us find the nearest neighbor of P. The search must first determine the leaf that contains the location/object whose nearest neighboring object is sought (i.e., P). Assuming a tree-based index, this is achieved by a top-down recursive algorithm. Initially, at each level of the recursion, we explore the subtree that contains P. Once the leaf node containing P has been found (i.e., 1), the distance from P to the nearest object in the leaf node is calculated (empty leaf nodes have a value of infinity). Next, we unwind the recursion so that at each level, we search the subtrees that represent regions overlapping a circle centered at P whose radius is the distance to the closest object that has been found so far. When more than one subtree must be searched, the subtrees representing regions nearer to P are searched before the subtrees that are farther away (since it is possible that an object in them might make it unnecessary to search the subtrees that are farther away).

In our example, the order in which the nodes are visited is given by their labels. We visit the brothers of the node 1 containing the query point P (and all remaining nodes at each level) in the order of the minimum distance from P to their borders (i.e., SE, NW, and NE for node 1). Therefore, as we unwind for the first time, we visit the eastern brother of node 1 and its subtrees (nodes 2 and 3 followed by nodes 4 and 5), node 6, and node 7. Note that once we have visited node 2, there is no need to visit node 4 since node 2 contains A. However, we must still visit node 3 containing point B (closer than A), but now there is no need to visit node 5. Similarly, there is no need to visit nodes 6 and 7 as they are too far away from P given our knowledge.
of A. Unwinding one more level reveals that due to the distance between P and A, we must visit node 8 as it could contain a point that is closer to P than A; however, there is no need to visit nodes 9, 10, 11, 12, and 13.

The algorithm that we described can also be adapted to find the \(k \) nearest neighbors in which case the pruning of objects that cannot serve as the \(k \) nearest neighbors is achieved by making use of the distance to the \(k \)th nearest object that has been found so far. Having retrieved the \(k \) closest objects, should we be interested in retrieving an additional object (i.e., the \(k+1 \)th nearest object), then we have to reinvoke the algorithm again to find the \(k+1 \) nearest objects. An alternative approach is incremental and makes use of a priority queue [24, 25, 26] so that there is no need to look again for the neighboring objects that have been reported so far.

There are many other applications where the sorting of objects is useful, and below we review a few that arise in computer graphics. For example, sorting forms the basis of all operations on z buffers, visibility calculations (e.g., BSP trees [21]), as well as back-to-front and front-to-back display algorithms. It also forms the basis of Warnock’s hidden-line [59] and hidden-surface [60] algorithms that repeatedly subdivide the picture area into successively smaller blocks while simultaneously searching it for areas that are sufficiently simple to be displayed. It is also used to accelerate ray tracing by finding ray-object intersections (e.g., [7]).

4 Concluding Remarks

An overview has been given of the rationale for sorting spatial objects in order to be able to index them thereby facilitating a number of operations involving search in the multidimensional domain. A distinction has been made between spatial objects that could be represented by traditional methods that have been applied to point data and those that have extent thereby rendering the traditional methods inapplicable.

Sorting is also used as the basis of an index in an environment where the data is drawn from a metric space rather than a vector space. In this case, the only information that we have is a distance function \(d \) (often a matrix) that indicates the degree of similarity (or dissimilarity) between all pairs of objects, given a set of \(N \) objects. Usually, it is required that \(d \) obey the triangle inequality, be nonnegative, and be symmetric, in which case it is known as a metric and also referred to as a distance metric. Indexes in such an environment are based on either picking one distinguished object \(p \) and a value \(r \), and then recursively subdividing the remaining objects into two classes depending on a comparison of their distance from \(p \) with \(r \), or by choosing two distinguished objects \(p_1 \) and \(p_2 \) and recursively subdividing the remaining objects into two classes depending on which of \(p_1 \) or \(p_2 \) is closer (e.g., [47, 56]). The difference between these methods and those for data that lies in a vector space is that the subdivision lines in the embedding space from which the objects are drawn are explicit for the vector space while they are implicit for the metric space (see [47] for more details).

The functioning of these various spatial sorting methods can be experienced by trying VASCO [12, 13, 14], a system for Visualizing and Animating Spatial Constructs and Operations. VASCO consists of a set of spatial index JAVATM (e.g., [6]) applets that enable users on the worldwide web to experiment with a number of hierarchical representations (e.g., [44, 45, 47]) for different spatial data types, and see animations of how they support a number of search queries (e.g., nearest neighbor and range queries). The VASCO system can be found at \url{http://cs.umd.edu/~hjs/quadtree/}.

Acknowledgments

I am deeply grateful to Jagan Sankaranarayanan for help with the figures and preparation for publication.

References

To appear in the International Journal of Shape Modeling, 2009

