Applying Geometric Thick Paths to Compute the Number of Additional Train Paths in a Railway Timetable

Anders Peterson Valentin Polishchuk Christiane Schmidt
Introduction

Routing a Maximum Number of Thick Paths through a Polygonal Domain

Thick Paths with Limited Slope

Construction of Polygonal Domain from the Timetable

Example

Conclusion and Outlook
• Marshalling yards: completed trains occupy highly demanded space until departure
• Marshalling yards: completed trains occupy highly demanded space until departure
➡ Depart ahead of schedule?
• Marshalling yards: completed trains occupy highly demanded space until departure
➡ Depart ahead of schedule?
➡ Should not contribute to congestion—ensure train path to the destination available
• Marshalling yards: completed trains occupy highly demanded space until departure
➡ Depart ahead of schedule?
➡ Should not contribute to congestion—ensure train path to the destination available
➡ Here: what if we want to add several additional trains?
• Marshalling yards: completed trains occupy highly demanded space until departure
 ➡ Depart ahead of schedule?
 ➡ Should not contribute to congestion—ensure train path to the destination available
 ➡ Here: what if we want to add several additional trains?
 ➡ Leave existing (passenger) traffic unaffected
• Marshalling yards: completed trains occupy highly demanded space until departure
 ➡ Depart ahead of schedule?
 ➡ Should not contribute to congestion—ensure train path to the destination available
 ➡ Here: what if we want to add several additional trains?
 ➡ Leave existing (passenger) traffic unaffected
 ➡ Q: How many can we add?
• Marshalling yards: completed trains occupy highly demanded space until departure
 ➡ Depart ahead of schedule?
 ➡ Should not contribute to congestion—ensure train path to the destination available
 ➡ Here: what if we want to add several additional trains?
 ➡ Leave existing (passenger) traffic unaffected
 ➡ Q: How many can we add?
 ➡ Residual capacity for additional train paths in a given time window
• Marshalling yards: completed trains occupy highly demanded space until departure
 ➡ Depart ahead of schedule?
 ➡ Should not contribute to congestion—ensure train path to the destination available
 ➡ Here: what if we want to add several additional trains?
 ➡ Leave existing (passenger) traffic unaffected
 ➡ Q: How many can we add?
 ➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
• Marshalling yards: completed trains occupy highly demanded space until departure
➡ Depart ahead of schedule?
➡ Should not contribute to congestion—ensure train path to the destination available
➡ Here: what if we want to add several additional trains?
➡ Leave existing (passenger) traffic unaffected
➡ Q: How many can we add?
➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
 - Compresses the timetable: existing train paths on the considered line section are shifted as close together as possible
• Marshalling yards: completed trains occupy highly demanded space until departure
 ➡ Depart ahead of schedule?
 ➡ Should not contribute to congestion—ensure train path to the destination available
 ➡ Here: what if we want to add several additional trains?
 ➡ Leave existing (passenger) traffic unaffected
 ➡ Q: How many can we add?
 ➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
 - Compresses the timetable: existing train paths on the considered line section are shifted as close together as possible
 ➡ Trains no longer considered at the time at which they actually run
- Marshalling yards: completed trains occupy highly demanded space until departure
 ➡ Depart ahead of schedule?
 ➡ Should not contribute to congestion—ensure train path to the destination available
 ➡ Here: what if we want to add several additional trains?
 ➡ Leave existing (passenger) traffic unaffected
 ➡ Q: How many can we add?
 ➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
 - Compresses the timetable: existing train paths on the considered line section are shifted as close together as possible
 ➡ Trains no longer considered at the time at which they actually run
- Saturation problem:
• Marshalling yards: completed trains occupy highly demanded space until departure
 ➡ Depart ahead of schedule?
 ➡ Should not contribute to congestion—ensure train path to the destination available
 ➡ Here: what if we want to add several additional trains?
 ➡ Leave existing (passenger) traffic unaffected
 ➡ Q: How many can we add?
 ➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
 - Compresses the timetable: existing train paths on the considered line section are
 shifted as close together as possible
 ➡ Trains no longer considered at the time at which they actually run
- Saturation problem:
 Given: Existing (possibly empty) timetable, a set of saturation trains
• Marshalling yards: completed trains occupy highly demanded space until departure
 ➡ Depart ahead of schedule?
 ➡ Should not contribute to congestion—ensure train path to the destination available
 ➡ Here: what if we want to add several additional trains?
 ➡ Leave existing (passenger) traffic unaffected
 ➡ Q: How many can we add?
 ➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
 - Compresses the timetable: existing train paths on the considered line section are shifted as close together as possible
 ➡ Trains no longer considered at the time at which they actually run

- Saturation problem:
 Given: Existing (possibly empty) timetable, a set of saturation trains
 Goal: Add as many trains as possible
- Marshalling yards: completed trains occupy highly demanded space until departure
 ➡ Depart ahead of schedule?
 ➡ Should not contribute to congestion—ensure train path to the destination available
 ➡ Here: what if we want to add several additional trains?
 ➡ Leave existing (passenger) traffic unaffected
 ➡ Q: How many can we add?
 ➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
 - Compresses the timetable: existing train paths on the considered line section are shifted as close together as possible
 ➡ Trains no longer considered at the time at which they actually run
- Saturation problem:
 Given: Existing (possibly empty) timetable, a set of saturation trains
 Goal: Add as many trains as possible
 - Various train types considered
• Marshalling yards: completed trains occupy highly demanded space until departure
 ➡ Depart ahead of schedule?
 ➡ Should not contribute to congestion—ensure train path to the destination available
 ➡ Here: what if we want to add several additional trains?
 ➡ Leave existing (passenger) traffic unaffected
 ➡ Q: How many can we add?
 ➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
 - Compresses the timetable: existing train paths on the considered line section are shifted as close together as possible
 ➡ Trains no longer considered at the time at which they actually run

- Saturation problem:
 Given: Existing (possibly empty) timetable, a set of saturation trains
 Goal: Add as many trains as possible
 - Various train types considered
 - Solved with heuristics (CAPRES) or MILP (Pellegrini et al., 2017)
• Marshalling yards: completed trains occupy highly demanded space until departure
 ➡ Depart ahead of schedule?
 ➡ Should not contribute to congestion—ensure train path to the destination available
 ➡ Here: what if we want to add several additional trains?
 ➡ Leave existing (passenger) traffic unaffected
 ➡ Q: How many can we add?
 ➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
 - Compresses the timetable: existing train paths on the considered line section are shifted as close together as possible
 ➡ Trains no longer considered at the time at which they actually run

- Saturation problem:
 Given: Existing (possibly empty) timetable, a set of saturation trains
 Goal: Add as many trains as possible
 - Various train types considered
 - Solved with heuristics (CAPRES) or MILP (Pellegrini et al., 2017)
 - We:
• Marshalling yards: completed trains occupy highly demanded space until departure
 ➡ Depart ahead of schedule?
 ➡ Should not contribute to congestion—ensure train path to the destination available
 ➡ Here: what if we want to add several additional trains?
 ➡ Leave existing (passenger) traffic unaffected
 ➡ Q: How many can we add?
 ➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
 - Compresses the timetable: existing train paths on the considered line section are
 shifted as close together as possible
 ➡ Trains no longer considered at the time at which they actually run

- Saturation problem:
 Given: Existing (possibly empty) timetable, a set of saturation trains
 Goal: Add as many trains as possible
 - Various train types considered
 - Solved with heuristics (CAPRES) or MILP (Pellegrini et al., 2017)

- We:
 - Consider a single type (outlook on several types given)
• Marshalling yards: completed trains occupy highly demanded space until departure
 ➡ Depart ahead of schedule?
 ➡ Should not contribute to congestion—ensure train path to the destination available
 ➡ Here: what if we want to add several additional trains?
 ➡ Leave existing (passenger) traffic unaffected
 ➡ Q: How many can we add?
 ➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
 - Compresses the timetable: existing train paths on the considered line section are shifted as close together as possible
 ➡ Trains no longer considered at the time at which they actually run

- Saturation problem:
 Given: Existing (possibly empty) timetable, a set of saturation trains
 Goal: Add as many trains as possible
 - Various train types considered
 - Solved with heuristics (CAPRES) or MILP (Pellegrini et al., 2017)

- We:
 - Consider a single type (outlook on several types given)
 - Aim to disturb passenger traffic as little as possible—trade-off with temporal distance to other trains
• Marshalling yards: completed trains occupy highly demanded space until departure
 ➡ Depart ahead of schedule?
 ➡ Should not contribute to congestion—ensure train path to the destination available
 ➡ Here: what if we want to add several additional trains?
 ➡ Leave existing (passenger) traffic unaffected
 ➡ Q: How many can we add?
 ➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
 - Compresses the timetable: existing train paths on the considered line section are
 shifted as close together as possible
 ➡ Trains no longer considered at the time at which they actually run

- Saturation problem:
 Given: Existing (possibly empty) timetable, a set of saturation trains
 Goal: Add as many trains as possible
 - Various train types considered
 - Solved with heuristics (CAPRES) or MILP (Pellegrini et al., 2017)

- We:
 - Consider a single type (outlook on several types given)
 - Aim to disturb passenger traffic as little as possible—trade-off with temporal distance
to other trains
 - We present optimal solution
Existing trains
Additional trains: need to keep temporal distance
Existing trains

Additional trains: need to keep temporal distance

⇒ Thick paths instead of lines
Existing trains

Additional trains: need to keep temporal distance

→ Thick paths instead of lines
• We consider the time-space diagram—the geometric representation
• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇒ temporal distance (different to trains running in same or opposite direction)
• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close \Rightarrow temporal distance (different to trains running in same or opposite direction)
• We think of train paths as “blown-up” line segments = thick paths
• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇒ temporal distance (different to trains running in same or opposite direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)
• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇒ temporal distance (different to trains running in same or opposite direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)
• How to route those thick paths? Concepts from Computational Geometry
• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close \Rightarrow temporal distance (different to trains running in same or opposite direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)
• How to route those thick paths? Concepts from Computational Geometry
• Need to make some adaptations, for example, if stations are lines, no path could cross these
• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close \Rightarrow temporal distance (different to trains running in same or opposite direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)
• How to route those thick paths? Concepts from Computational Geometry
• Need to make some adaptations, for example, if stations are lines, no path could cross these

\Rightarrow 1. Show how to construct the appropriate polygonal domain
• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇒ temporal distance (different to trains running in same or opposite direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)
• How to route those thick paths? Concepts from Computational Geometry
• Need to make some adaptations, for example, if stations are lines, no path could cross these
 ➔ 1. Show how to construct the appropriate polygonal domain
 ➔ 2. Show how to route the maximum number of thick non-crossing paths in that domain:
• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇒ temporal distance (different to trains running in same or opposite direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)
• How to route those thick paths? Concepts from Computational Geometry
• Need to make some adaptations, for example, if stations are lines, no path could cross these
 ➡ 1. Show how to construct the appropriate polygonal domain
 ➡ 2. Show how to route the maximum number of thick non-crossing paths in that domain:
 • Paths should be x-monotone (we cannot go back in time)
• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇒ temporal distance (different to trains running in same or opposite direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)
• How to route those thick paths? Concepts from Computational Geometry
• Need to make some adaptations, for example, if stations are lines, no path could cross these
 1. Show how to construct the appropriate polygonal domain
 2. Show how to route the maximum number of thick non-crossing paths in that domain:
 • Paths should be x-monotone (we cannot go back in time)
 • Trains have a maximum speed ⇒ paths have a limited slope
• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇒ temporal distance (different to trains running in same or opposite direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)
• How to route those thick paths? Concepts from Computational Geometry
• Need to make some adaptations, for example, if stations are lines, no path could cross these
 ➡ 1. Show how to construct the appropriate polygonal domain
 ➡ 2. Show how to route the maximum number of thick non-crossing paths in that domain:
 • Paths should be x-monotone (we cannot go back in time)
 • Trains have a maximum speed ⇒ paths have a limited slope

We start with 2
Routing a Maximum Number of Thick Paths through a Polygonal Domain
Simple polygon P
Simple polygon P

Holes
Polygonal domain

Simple polygon P

Holes
Simple polygon P

Holes

Source Γ_s

Polygonal domain
Simple polygon P

Holes

Source Γ_s

Sink Γ_t
Simple polygon P

Polygonsal domain

Source Γ_s

Bottom

Sink Γ_t
Route thick paths from the source to the sink, avoiding all holes (=obstacles)
Thin path π: simple curve
Thin path π: simple curve
Let C_r denote the open disk of radius r centered at the origin
Thin path π: simple curve
Let C_r denote the open disk of radius r centered at the origin
For $S \subset \mathbb{R}^2$: $(S)^r = S \oplus C_r = \{x+y | x \in S, y \in C_r\}$ - Minkowski sum
Thin path π: simple curve
Let C_r denote the open desk of radius r centered at the origin
For $S \subset \mathbb{R}^2$: $(S)^r = S \oplus C_r = \{x+y | x \in S, y \in C_r\}$ - Minkowski sum
Thick path Π: Minkowski sum of a thin path and a unit disk $\Pi = (\pi)^1$
We want:
We want:
• Maximum number of non crossing thick paths from source to sink
We want:
• Maximum number of non crossing thick paths from source to sink
• Paths should avoid all obstacles
We want:
• Maximum number of non crossing thick paths from source to sink
• Paths should avoid all obstacles
• No path runs outside of polygonal domain
We want:
- Maximum number of non crossing thick paths from source to sink
- Paths should avoid all obstacles
- No path runs outside of polygonal domain
- non-crossing: $\Pi_i \cap \Pi_j = \emptyset$ (interiors disjoint, may share boundary)
We want:
- Maximum number of non crossing thick paths from source to sink
- Paths should avoid all obstacles
- No path runs outside of polygonal domain
- non-crossing: $\Pi_i \cap \Pi_j = \emptyset$ (interiors disjoint, may share boundary)
- Need some more concepts (Ω perforated at the source and sinks and Riemann flaps glued to Ω, ...)
Algorithm by Arkin et al. (2010) to compute maximum number of thick paths:
Algorithm by Arkin et al. (2010) to compute maximum number of thick paths:
• Grass-fire analogy
Algorithm by Arkin et al. (2010) to compute maximum number of thick paths:

- Grass-fire analogy
- Free space is grass over which fire travels with speed 1
Algorithm by Arkin et al. (2010) to compute maximum number of thick paths:

- Grass-fire analogy
- Free space is grass over which fire travels with speed 1
- Holes are highly flammable: once ignited, fire moves through them with infinite speed
Algorithm by Arkin et al. (2010) to compute maximum number of thick paths:

- Grass-fire analogy
- Free space is grass over which fire travels with speed 1
- Holes are highly flammable: once ignited, fire moves through them with infinite speed
- We start setting the bottom on fire.
Algorithm by Arkin et al. (2010) to compute maximum number of thick paths:

- Grass-fire analogy
- Free space is grass over which fire travels with speed 1
- Holes are highly flammable: once ignited, fire moves through them with infinite speed
- We start setting the bottom on fire.
- Wavefront at time τ: boundary of burnt grass by time τ
Algorithm by Arkin et al. (2010) to compute maximum number of thick paths:

- Grass-fire analogy
- Free space is grass over which fire travels with speed 1
- Holes are highly flammable: once ignited, fire moves through them with infinite speed
- We start setting the bottom on fire.
- Wavefront at time τ: boundary of burnt grass by time τ
- Whenever fire burns 2 time units w/o hitting hole \rightarrow we can route a thick path through the burnt grass
Algorithm by Arkin et al. (2010) to compute maximum number of thick paths:
- Grass-fire analogy
- Free space is grass over which fire travels with speed 1
- Holes are highly flammable: once ignited, fire moves through them with infinite speed
- We start setting the bottom on fire.
- Wavefront at time τ: boundary of burnt grass by time τ
- Whenever fire burns 2 time units w/o hitting hole \rightarrow we can route a thick path through the burnt grass
- Once path has been routed: wavefront is new bottom, and we start over
Algorithm by Arkin et al. (2010) to compute maximum number of thick paths:

- Grass-fire analogy
- Free space is grass over which fire travels with speed 1
- Holes are highly flammable: once ignited, fire moves through them with infinite speed
- We start setting the bottom on fire.
- Wavefront at time τ: boundary of burnt grass by time τ
- Whenever fire burns 2 time units w/o hitting hole \rightarrow we can route a thick path through the burnt grass
- Once path has been routed: wavefront is new bottom, and we start over
- Some additional tweaks when we hit a hole after $\tau<2$
Polishchuk (2007) extended this to x-monotone paths:
Polishchuk (2007) extended this to x-monotone paths:
• Need a monotone boundary, if not, add “waterfalls”
Polishchuk (2007) extended this to x-monotone paths:
• Need a monotone boundary, if not, add “waterfalls”
• Again, let fire burn
Polishchuk (2007) extended this to x-monotone paths:
- Need a monotone boundary, if not, add “waterfalls”
- Again, let fire burn
- If we hit a hole in the process, outer-monotonize holes using waterfalls
Polishchuk (2007) extended this to x-monotone paths:
- Need a monotone boundary, if not, add “waterfalls”
- Again, let fire burn
- If we hit a hole in the process, outer-monotonize holes using waterfalls
Polishchuk (2007) extended this to x-monotone paths:

- Need a monotone boundary, if not, add “waterfalls”
- Again, let fire burn
- If we hit a hole in the process, outer-monotonize holes using waterfalls
Polishchuk (2007) extended this to x-monotone paths:

- Need a monotone boundary, if not, add “waterfalls”
- Again, let fire burn
- If we hit a hole in the process, outer-monotonize holes using waterfalls
Thick Paths with Limited Slope
We want:
We want:
• Maximum number of non crossing thick paths from source to sink
We want:
• Maximum number of non crossing thick paths from source to sink
• Slope should be within a given cone C
We want:

- Maximum number of non crossing thick paths from source to sink
- Slope should be within a given cone C

- X-monotone
We want:
• Maximum number of non crossing thick paths from source to sink
• Slope should be within a given cone C
 - X-monotone
 - Limited speed \Rightarrow Limited slope
We want:
- Maximum number of non crossing thick paths from source to sink
- Slope should be within a given cone \(C \)
 - X-monotone
 - Limited speed \(\Rightarrow \) Limited slope
- We showed how to adapt the waterfall construction to compute the maximum number of thick non-crossing paths with a given slope range (\(\triangleq C \)-respecting)
We want:
- Maximum number of non crossing thick paths from source to sink
- Slope should be within a given cone C
 - X-monotone
 - Limited speed \Rightarrow Limited slope
- We showed how to adapt the waterfall construction to compute the maximum number of thick non-crossing paths with a given slope range ($\triangleleft C$-respecting)
We want:
• Maximum number of non crossing thick paths from source to sink
• Slope should be within a given cone C
 - X-monotone
 - Limited speed \Rightarrow Limited slope
• We showed how to adapt the waterfall construction to compute the maximum number of thick non-crossing paths with a given slope range ($\supseteq\text{C}$-respecting)
We want:
- Maximum number of non crossing thick paths from source to sink
- Slope should be within a given cone C
 - X-monotone
 - Limited speed \Rightarrow Limited slope
- We showed how to adapt the waterfall construction to compute the maximum number of thick non-crossing paths with a given slope range ($\triangleq C$-respecting)
We want:
- Maximum number of non crossing thick paths from source to sink
- Slope should be within a given cone C
 - X-monotone
 - Limited speed \Rightarrow Limited slope
- We showed how to adapt the waterfall construction to compute the maximum number of thick non-crossing paths with a given slope range ($\triangleq C$-respecting)
We want:
- Maximum number of non crossing thick paths from source to sink
- Slope should be within a given cone C
 - X-monotone
 - Limited speed \Rightarrow Limited slope
- We showed how to adapt the waterfall construction to compute the maximum number of thick non-crossing paths with a given slope range ($\triangleleft C$-respecting)
We want:
- Maximum number of non crossing thick paths from source to sink
- Slope should be within a given cone C
 - X-monotone
 - Limited speed \Rightarrow Limited slope
- We showed how to adapt the waterfall construction to compute the maximum number of thick non-crossing paths with a given slope range ($\triangleq C$-respecting)
We want:
- Maximum number of non crossing thick paths from source to sink
- Slope should be within a given cone C
 - X-monotone
 - Limited speed \Rightarrow Limited slope
- We showed how to adapt the waterfall construction to compute the maximum number of thick non-crossing paths with a given slope range ($\leq C$-respecting)

Theorem: A representation of the maximum number of C-respecting thick-non-crossing paths can be found in $O(nh+n\log n)$ time.
• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇒ temporal distance (different to trains running in same or opposite direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)
• How to route those thick paths? Concepts from Computational Geometry
• Need to make some adaptations, for example, if stations are lines, no path could cross these
 ➡ 1. Show how to construct the appropriate polygonal domain
 ➡ 2. Show how to route the maximum number of thick non-crossing paths in that domain:
 • Paths should be x-monotone (we cannot go back in time)
 • Trains have a maximum speed ⇒ paths have a limited slope
• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇒ temporal distance (different to trains running in same or opposite direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)
• How to route those thick paths? Concepts from Computational Geometry
• Need to make some adaptations, for example, if stations are lines, no path could cross these
 ➡ 1. Show how to construct the appropriate polygonal domain
 ➡ 2. Show how to route the maximum number of thick non-crossing paths in that domain:
 • Paths should be x-monotone (we cannot go back in time)
 • Trains have a maximum speed ⇒ paths have a limited slope
• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇒ temporal distance (different to trains running in same or opposite direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)
• How to route those thick paths? Concepts from Computational Geometry
• Need to make some adaptations, for example, if stations are lines, no path could cross these
 ➡ 1. Show how to construct the appropriate polygonal domain
 ➡ 2. Show how to route the maximum number of thick non-crossing paths in that domain:
 • Paths should be x-monotone (we cannot go back in time)
 • Trains have a maximum speed ⇒ paths have a limited slope

Still left to do
Construction of Polygonal Domain from the Timetable
If we would define the time windows as source and sink

cone: \[\big/ \]
thick path: \[\big/ \]
If we would define the time windows as source and sink.
If we would define the time windows as source and sink

cone: \(w \)
thick path: \(w \)
If we would define the time windows as source and sink
⇒ Possible thick paths would correspond to train paths in a smaller time interval
If we would define the time windows as source and sink
⇒ Possible thick paths would correspond to train paths in a smaller time interval
⇒ Extend the time windows by $d/2$ to both sides to create Γ_s and Γ_t
($\Gamma_s=[p_1,p_2], \Gamma_t=[p_3,p_4]$)
If we would define the time windows as source and sink
⇒ Possible thick paths would correspond to train paths in a smaller time interval
⇒ Extend the time windows by \(d/2 \) to both sides to create \(\Gamma_s \) and \(\Gamma_t \)
\((\Gamma_s = [p_1, p_2], \Gamma_t = [p_3, p_4]) \)
s_i \hspace{1cm} s_{i+1}

\angle allowed cone
Vertical lines at stations are obstacles
Vertical lines at stations are obstacles
⇒ We need to delete them
Vertical lines at stations are obstacles

⇒ We need to delete them

We need to be able to spend some time at a station
Vertical lines at stations are obstacles
⇒ We need to delete them
We need to be able to spend some time at a station
⇒ “Cut” each station open and blow up by vertical distance:
Vertical lines at stations are obstacles
⇒ We need to delete them
We need to be able to spend some time at a station
⇒ “Cut” each station open and blow up by vertical distance:
- If the station s has exactly k sidetracks, we insert a vertical distance of $k*d$
Vertical lines at stations are obstacles
⇒ We need to delete them
We need to be able to spend some time at a station
⇒ “Cut” each station open and blow up by vertical distance:
 - If the station s has exactly k sidetracks, we insert a vertical distance of $k \cdot d$
 - If no such limit exists, we can insert a vertical distance of $\min\{|\Gamma_s| + d, |\Gamma_t| + d\}$
Vertical lines at stations are obstacles
⇒ We need to delete them
We need to be able to spend some time at a station
⇒ “Cut” each station open and blow up by vertical distance:
- If the station s has exactly k sidetracks, we insert a vertical distance of $k \cdot d$
- If no such limit exists, we can insert a vertical distance of $\min\{|\Gamma_s| + d, |\Gamma_t| + d\}$

But now the time of departure cannot be reached by our paths with limited slope
Vertical lines at stations are obstacles
⇒ We need to delete them
We need to be able to spend some time at a station
⇒ “Cut” each station open and blow up by vertical distance:
- If the station s has exactly k sidetracks, we insert a vertical distance of $k \cdot d$
- If no such limit exists, we can insert a vertical distance of $\min\{|\Gamma_s|+d, |\Gamma_t|+d\}$

But now the time of departure cannot be reached by our paths with limited slope
⇒ We need to shift the consecutive stations to the right, such that this path can be reached with limited slope
We need to keep a temporal distance to the existing trains in the timetable.
We need to keep a temporal distance to the existing trains in the timetable
⇒ “Blow them up” as polygonal obstacles:
We need to keep a temporal distance to the existing trains in the timetable
⇒ “Blow them up” as polygonal obstacles:
Insert the security distance \((d_s, d_o)\)
We need to keep a temporal distance to the existing trains in the timetable ⇒ “Blow them up” as polygonal obstacles: Insert the security distance \((d_s, d_0)\)

In the example we used \(d_s=d, \, d_0=d/2\)
cone: \(/ \)

thick path:
We need to limit our outer polygon:
We need to limit our outer polygon:
• No train can run earlier than departing earliest with highest speed
We need to limit our outer polygon:

- No train can run earlier than departing earliest with highest speed

$\Rightarrow \ell_2$
We need to limit our outer polygon:

- No train can run earlier than departing earliest with highest speed
 \[
 \Rightarrow l_2
 \]
- No train can run later than arriving latest with highest speed
We need to limit our outer polygon:

- No train can run earlier than departing earliest with highest speed
 \[\Rightarrow \ell_2 \]

- No train can run later than arriving latest with highest speed
 \[\Rightarrow \ell_1 \]
We need to limit our outer polygon:

- No train can run earlier than departing earliest with highest speed
 \[\Rightarrow \ell_2 \]
- No train can run later than arriving latest with highest speed
 \[\Rightarrow \ell_1 \]
- Some further boundary parts
We need to limit our outer polygon:

- No train can run earlier than departing earliest with highest speed
 \(\Rightarrow \ell_2\)
- No train can run later than arriving latest with highest speed
 \(\Rightarrow \ell_1\)
- Some further boundary parts
- Intersect holes with boundary
Example
cone: \begin{center}
\begin{tikzpicture}
\fill[fill=teal, thick] (-1,-1) -- (-1,1) -- (1,1) -- (1,-1) -- cycle;
\end{tikzpicture}
\end{center}

thick path:
cone: \[\text{thick path:}\]
cone:

thick path:
cone: \[\text{thick path:} \]
cone: ___

thick path:

cone:

thick path:

Conclusion and Outlook
• Paths of Different Thickness (different temporal buffers required):
• Paths of Different Thickness (different temporal buffers required):
 - NP-hard in general
• Paths of Different Thickness (different temporal buffers required):
 - NP-hard in general
 - Same algorithm if the order of paths, that is, the order of trains is given
- Paths of Different Thickness (different temporal buffers required):
 - NP-hard in general
 - Same algorithm if the order of paths, that is, the order of trains is given
- Paths with Different Cones (different train types)
• Paths of Different Thickness (different temporal buffers required):
 - NP-hard in general
 - Same algorithm if the order of paths, that is, the order of trains is given
• Paths with Different Cones (different train types)
 - Again possible with the algorithm if the order of paths/order of trains is given: We simply make the new bottom respecting each consecutive cone
• Paths of Different Thickness (different temporal buffers required):
 - NP-hard in general
 - Same algorithm if the order of paths, that is, the order of trains is given
• Paths with Different Cones (different train types)
 - Again possible with the algorithm if the order of paths/order of trains is given: We simply make the new bottom respecting each consecutive cone

Outlook
• Paths of Different Thickness (different temporal buffers required):
 - NP-hard in general
 - Same algorithm if the order of paths, that is, the order of trains is given
• Paths with Different Cones (different train types)
 - Again possible with the algorithm if the order of paths/order of trains is given: We simply make the new bottom respecting each consecutive cone

Outlook

• Application to real-world example
• Paths of Different Thickness (different temporal buffers required):
 - NP-hard in general
 - Same algorithm if the order of paths, that is, the order of trains is given
• Paths with Different Cones (different train types)
 - Again possible with the algorithm if the order of paths/order of trains is given: We simply make the new bottom respecting each consecutive cone

Outlook

• Application to real-world example
• What other geometric concepts can be used?